Source File
object.go
Belonging Package
go/types
// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
// Source: ../../cmd/compile/internal/types2/object.go
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import (
)
// An Object is a named language entity.
// An Object may be a constant ([Const]), type name ([TypeName]),
// variable or struct field ([Var]), function or method ([Func]),
// imported package ([PkgName]), label ([Label]),
// built-in function ([Builtin]),
// or the predeclared identifier 'nil' ([Nil]).
//
// The environment, which is structured as a tree of Scopes,
// maps each name to the unique Object that it denotes.
type Object interface {
Parent() *Scope // scope in which this object is declared; nil for methods and struct fields
Pos() token.Pos // position of object identifier in declaration
Pkg() *Package // package to which this object belongs; nil for labels and objects in the Universe scope
Name() string // package local object name
Type() Type // object type
Exported() bool // reports whether the name starts with a capital letter
Id() string // object name if exported, qualified name if not exported (see func Id)
// String returns a human-readable string of the object.
// Use [ObjectString] to control how package names are formatted in the string.
String() string
// order reflects a package-level object's source order: if object
// a is before object b in the source, then a.order() < b.order().
// order returns a value > 0 for package-level objects; it returns
// 0 for all other objects (including objects in file scopes).
order() uint32
// color returns the object's color.
color() color
// setType sets the type of the object.
setType(Type)
// setOrder sets the order number of the object. It must be > 0.
setOrder(uint32)
// setColor sets the object's color. It must not be white.
setColor(color color)
// setParent sets the parent scope of the object.
setParent(*Scope)
// sameId reports whether obj.Id() and Id(pkg, name) are the same.
// If foldCase is true, names are considered equal if they are equal with case folding
// and their packages are ignored (e.g., pkg1.m, pkg1.M, pkg2.m, and pkg2.M are all equal).
sameId(pkg *Package, name string, foldCase bool) bool
// scopePos returns the start position of the scope of this Object
scopePos() token.Pos
// setScopePos sets the start position of the scope for this Object.
setScopePos(pos token.Pos)
}
func isExported( string) bool {
, := utf8.DecodeRuneInString()
return unicode.IsUpper()
}
// Id returns name if it is exported, otherwise it
// returns the name qualified with the package path.
func ( *Package, string) string {
if isExported() {
return
}
// unexported names need the package path for differentiation
// (if there's no package, make sure we don't start with '.'
// as that may change the order of methods between a setup
// inside a package and outside a package - which breaks some
// tests)
:= "_"
// pkg is nil for objects in Universe scope and possibly types
// introduced via Eval (see also comment in object.sameId)
if != nil && .path != "" {
= .path
}
return + "." +
}
// An object implements the common parts of an Object.
type object struct {
parent *Scope
pos token.Pos
pkg *Package
name string
typ Type
order_ uint32
color_ color
scopePos_ token.Pos
}
// color encodes the color of an object (see Checker.objDecl for details).
type color uint32
// An object may be painted in one of three colors.
// Color values other than white or black are considered grey.
const (
white color = iota
black
grey // must be > white and black
)
func ( color) () string {
switch {
case white:
return "white"
case black:
return "black"
default:
return "grey"
}
}
// colorFor returns the (initial) color for an object depending on
// whether its type t is known or not.
func colorFor( Type) color {
if != nil {
return black
}
return white
}
// Parent returns the scope in which the object is declared.
// The result is nil for methods and struct fields.
func ( *object) () *Scope { return .parent }
// Pos returns the declaration position of the object's identifier.
func ( *object) () token.Pos { return .pos }
// Pkg returns the package to which the object belongs.
// The result is nil for labels and objects in the Universe scope.
func ( *object) () *Package { return .pkg }
// Name returns the object's (package-local, unqualified) name.
func ( *object) () string { return .name }
// Type returns the object's type.
func ( *object) () Type { return .typ }
// Exported reports whether the object is exported (starts with a capital letter).
// It doesn't take into account whether the object is in a local (function) scope
// or not.
func ( *object) () bool { return isExported(.name) }
// Id is a wrapper for Id(obj.Pkg(), obj.Name()).
func ( *object) () string { return Id(.pkg, .name) }
func ( *object) () string { panic("abstract") }
func ( *object) () uint32 { return .order_ }
func ( *object) () color { return .color_ }
func ( *object) () token.Pos { return .scopePos_ }
func ( *object) ( *Scope) { .parent = }
func ( *object) ( Type) { .typ = }
func ( *object) ( uint32) { assert( > 0); .order_ = }
func ( *object) ( color) { assert( != white); .color_ = }
func ( *object) ( token.Pos) { .scopePos_ = }
func ( *object) ( *Package, string, bool) bool {
// If we don't care about capitalization, we also ignore packages.
if && strings.EqualFold(.name, ) {
return true
}
// spec:
// "Two identifiers are different if they are spelled differently,
// or if they appear in different packages and are not exported.
// Otherwise, they are the same."
if .name != {
return false
}
// obj.Name == name
if .Exported() {
return true
}
// not exported, so packages must be the same
return samePkg(.pkg, )
}
// cmp reports whether object a is ordered before object b.
// cmp returns:
//
// -1 if a is before b
// 0 if a is equivalent to b
// +1 if a is behind b
//
// Objects are ordered nil before non-nil, exported before
// non-exported, then by name, and finally (for non-exported
// functions) by package path.
func ( *object) ( *object) int {
if == {
return 0
}
// Nil before non-nil.
if == nil {
return -1
}
if == nil {
return +1
}
// Exported functions before non-exported.
:= isExported(.name)
:= isExported(.name)
if != {
if {
return -1
}
return +1
}
// Order by name and then (for non-exported names) by package.
if .name != .name {
return strings.Compare(.name, .name)
}
if ! {
return strings.Compare(.pkg.path, .pkg.path)
}
return 0
}
// A PkgName represents an imported Go package.
// PkgNames don't have a type.
type PkgName struct {
object
imported *Package
used bool // set if the package was used
}
// NewPkgName returns a new PkgName object representing an imported package.
// The remaining arguments set the attributes found with all Objects.
func ( token.Pos, *Package, string, *Package) *PkgName {
return &PkgName{object{nil, , , , Typ[Invalid], 0, black, nopos}, , false}
}
// Imported returns the package that was imported.
// It is distinct from Pkg(), which is the package containing the import statement.
func ( *PkgName) () *Package { return .imported }
// A Const represents a declared constant.
type Const struct {
object
val constant.Value
}
// NewConst returns a new constant with value val.
// The remaining arguments set the attributes found with all Objects.
func ( token.Pos, *Package, string, Type, constant.Value) *Const {
return &Const{object{nil, , , , , 0, colorFor(), nopos}, }
}
// Val returns the constant's value.
func ( *Const) () constant.Value { return .val }
func (*Const) () {} // a constant may be a dependency of an initialization expression
// A TypeName is an [Object] that represents a type with a name:
// a defined type ([Named]),
// an alias type ([Alias]),
// a type parameter ([TypeParam]),
// or a predeclared type such as int or error.
type TypeName struct {
object
}
// NewTypeName returns a new type name denoting the given typ.
// The remaining arguments set the attributes found with all Objects.
//
// The typ argument may be a defined (Named) type or an alias type.
// It may also be nil such that the returned TypeName can be used as
// argument for NewNamed, which will set the TypeName's type as a side-
// effect.
func ( token.Pos, *Package, string, Type) *TypeName {
return &TypeName{object{nil, , , , , 0, colorFor(), nopos}}
}
// NewTypeNameLazy returns a new defined type like NewTypeName, but it
// lazily calls resolve to finish constructing the Named object.
func _NewTypeNameLazy( token.Pos, *Package, string, func( *Named) ( []*TypeParam, Type, []*Func)) *TypeName {
:= NewTypeName(, , , nil)
NewNamed(, nil, nil).loader =
return
}
// IsAlias reports whether obj is an alias name for a type.
func ( *TypeName) () bool {
switch t := .typ.(type) {
case nil:
return false
// case *Alias:
// handled by default case
case *Basic:
// unsafe.Pointer is not an alias.
if .pkg == Unsafe {
return false
}
// Any user-defined type name for a basic type is an alias for a
// basic type (because basic types are pre-declared in the Universe
// scope, outside any package scope), and so is any type name with
// a different name than the name of the basic type it refers to.
// Additionally, we need to look for "byte" and "rune" because they
// are aliases but have the same names (for better error messages).
return .pkg != nil || .name != .name || == universeByte || == universeRune
case *Named:
return != .obj
case *TypeParam:
return != .obj
default:
return true
}
}
// A Variable represents a declared variable (including function parameters and results, and struct fields).
type Var struct {
object
embedded bool // if set, the variable is an embedded struct field, and name is the type name
isField bool // var is struct field
used bool // set if the variable was used
origin *Var // if non-nil, the Var from which this one was instantiated
}
// NewVar returns a new variable.
// The arguments set the attributes found with all Objects.
func ( token.Pos, *Package, string, Type) *Var {
return &Var{object: object{nil, , , , , 0, colorFor(), nopos}}
}
// NewParam returns a new variable representing a function parameter.
func ( token.Pos, *Package, string, Type) *Var {
return &Var{object: object{nil, , , , , 0, colorFor(), nopos}, used: true} // parameters are always 'used'
}
// NewField returns a new variable representing a struct field.
// For embedded fields, the name is the unqualified type name
// under which the field is accessible.
func ( token.Pos, *Package, string, Type, bool) *Var {
return &Var{object: object{nil, , , , , 0, colorFor(), nopos}, embedded: , isField: true}
}
// Anonymous reports whether the variable is an embedded field.
// Same as Embedded; only present for backward-compatibility.
func ( *Var) () bool { return .embedded }
// Embedded reports whether the variable is an embedded field.
func ( *Var) () bool { return .embedded }
// IsField reports whether the variable is a struct field.
func ( *Var) () bool { return .isField }
// Origin returns the canonical Var for its receiver, i.e. the Var object
// recorded in Info.Defs.
//
// For synthetic Vars created during instantiation (such as struct fields or
// function parameters that depend on type arguments), this will be the
// corresponding Var on the generic (uninstantiated) type. For all other Vars
// Origin returns the receiver.
func ( *Var) () *Var {
if .origin != nil {
return .origin
}
return
}
func (*Var) () {} // a variable may be a dependency of an initialization expression
// A Func represents a declared function, concrete method, or abstract
// (interface) method. Its Type() is always a *Signature.
// An abstract method may belong to many interfaces due to embedding.
type Func struct {
object
hasPtrRecv_ bool // only valid for methods that don't have a type yet; use hasPtrRecv() to read
origin *Func // if non-nil, the Func from which this one was instantiated
}
// NewFunc returns a new function with the given signature, representing
// the function's type.
func ( token.Pos, *Package, string, *Signature) *Func {
var Type
if != nil {
=
} else {
// Don't store a (typed) nil *Signature.
// We can't simply replace it with new(Signature) either,
// as this would violate object.{Type,color} invariants.
// TODO(adonovan): propose to disallow NewFunc with nil *Signature.
}
return &Func{object{nil, , , , , 0, colorFor(), nopos}, false, nil}
}
// Signature returns the signature (type) of the function or method.
func ( *Func) () *Signature {
if .typ != nil {
return .typ.(*Signature) // normal case
}
// No signature: Signature was called either:
// - within go/types, before a FuncDecl's initially
// nil Func.Type was lazily populated, indicating
// a types bug; or
// - by a client after NewFunc(..., nil),
// which is arguably a client bug, but we need a
// proposal to tighten NewFunc's precondition.
// For now, return a trivial signature.
return new(Signature)
}
// FullName returns the package- or receiver-type-qualified name of
// function or method obj.
func ( *Func) () string {
var bytes.Buffer
writeFuncName(&, , nil)
return .String()
}
// Scope returns the scope of the function's body block.
// The result is nil for imported or instantiated functions and methods
// (but there is also no mechanism to get to an instantiated function).
func ( *Func) () *Scope { return .typ.(*Signature).scope }
// Origin returns the canonical Func for its receiver, i.e. the Func object
// recorded in Info.Defs.
//
// For synthetic functions created during instantiation (such as methods on an
// instantiated Named type or interface methods that depend on type arguments),
// this will be the corresponding Func on the generic (uninstantiated) type.
// For all other Funcs Origin returns the receiver.
func ( *Func) () *Func {
if .origin != nil {
return .origin
}
return
}
// Pkg returns the package to which the function belongs.
//
// The result is nil for methods of types in the Universe scope,
// like method Error of the error built-in interface type.
func ( *Func) () *Package { return .object.Pkg() }
// hasPtrRecv reports whether the receiver is of the form *T for the given method obj.
func ( *Func) () bool {
// If a method's receiver type is set, use that as the source of truth for the receiver.
// Caution: Checker.funcDecl (decl.go) marks a function by setting its type to an empty
// signature. We may reach here before the signature is fully set up: we must explicitly
// check if the receiver is set (we cannot just look for non-nil obj.typ).
if , := .typ.(*Signature); != nil && .recv != nil {
, := deref(.recv.typ)
return
}
// If a method's type is not set it may be a method/function that is:
// 1) client-supplied (via NewFunc with no signature), or
// 2) internally created but not yet type-checked.
// For case 1) we can't do anything; the client must know what they are doing.
// For case 2) we can use the information gathered by the resolver.
return .hasPtrRecv_
}
func (*Func) () {} // a function may be a dependency of an initialization expression
// A Label represents a declared label.
// Labels don't have a type.
type Label struct {
object
used bool // set if the label was used
}
// NewLabel returns a new label.
func ( token.Pos, *Package, string) *Label {
return &Label{object{pos: , pkg: , name: , typ: Typ[Invalid], color_: black}, false}
}
// A Builtin represents a built-in function.
// Builtins don't have a valid type.
type Builtin struct {
object
id builtinId
}
func newBuiltin( builtinId) *Builtin {
return &Builtin{object{name: predeclaredFuncs[].name, typ: Typ[Invalid], color_: black}, }
}
// Nil represents the predeclared value nil.
type Nil struct {
object
}
func writeObject( *bytes.Buffer, Object, Qualifier) {
var *TypeName
:= .Type()
switch obj := .(type) {
case *PkgName:
fmt.Fprintf(, "package %s", .Name())
if := .imported.path; != "" && != .name {
fmt.Fprintf(, " (%q)", )
}
return
case *Const:
.WriteString("const")
case *TypeName:
=
.WriteString("type")
if isTypeParam() {
.WriteString(" parameter")
}
case *Var:
if .isField {
.WriteString("field")
} else {
.WriteString("var")
}
case *Func:
.WriteString("func ")
writeFuncName(, , )
if != nil {
WriteSignature(, .(*Signature), )
}
return
case *Label:
.WriteString("label")
= nil
case *Builtin:
.WriteString("builtin")
= nil
case *Nil:
.WriteString("nil")
return
default:
panic(fmt.Sprintf("writeObject(%T)", ))
}
.WriteByte(' ')
// For package-level objects, qualify the name.
if .Pkg() != nil && .Pkg().scope.Lookup(.Name()) == {
.WriteString(packagePrefix(.Pkg(), ))
}
.WriteString(.Name())
if == nil {
return
}
if != nil {
switch t := .(type) {
case *Basic:
// Don't print anything more for basic types since there's
// no more information.
return
case genericType:
if .TypeParams().Len() > 0 {
newTypeWriter(, ).tParamList(.TypeParams().list())
}
}
if .IsAlias() {
.WriteString(" =")
if , := .(*Alias); { // materialized? (gotypesalias=1)
= .fromRHS
}
} else if , := .(*TypeParam); != nil {
= .bound
} else {
// TODO(gri) should this be fromRHS for *Named?
// (See discussion in #66559.)
= under()
}
}
// Special handling for any: because WriteType will format 'any' as 'any',
// resulting in the object string `type any = any` rather than `type any =
// interface{}`. To avoid this, swap in a different empty interface.
if .Name() == "any" && .Parent() == Universe {
assert(Identical(, &emptyInterface))
= &emptyInterface
}
.WriteByte(' ')
WriteType(, , )
}
func packagePrefix( *Package, Qualifier) string {
if == nil {
return ""
}
var string
if != nil {
= ()
} else {
= .Path()
}
if != "" {
+= "."
}
return
}
// ObjectString returns the string form of obj.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func ( Object, Qualifier) string {
var bytes.Buffer
writeObject(&, , )
return .String()
}
func ( *PkgName) () string { return ObjectString(, nil) }
func ( *Const) () string { return ObjectString(, nil) }
func ( *TypeName) () string { return ObjectString(, nil) }
func ( *Var) () string { return ObjectString(, nil) }
func ( *Func) () string { return ObjectString(, nil) }
func ( *Label) () string { return ObjectString(, nil) }
func ( *Builtin) () string { return ObjectString(, nil) }
func ( *Nil) () string { return ObjectString(, nil) }
func writeFuncName( *bytes.Buffer, *Func, Qualifier) {
if .typ != nil {
:= .typ.(*Signature)
if := .Recv(); != nil {
.WriteByte('(')
if , := .Type().(*Interface); {
// gcimporter creates abstract methods of
// named interfaces using the interface type
// (not the named type) as the receiver.
// Don't print it in full.
.WriteString("interface")
} else {
WriteType(, .Type(), )
}
.WriteByte(')')
.WriteByte('.')
} else if .pkg != nil {
.WriteString(packagePrefix(.pkg, ))
}
}
.WriteString(.name)
}
The pages are generated with Golds v0.7.3. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |