Source File
lookup.go
Belonging Package
go/types
// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
// Source: ../../cmd/compile/internal/types2/lookup.go
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements various field and method lookup functions.
package types
import
// Internal use of LookupFieldOrMethod: If the obj result is a method
// associated with a concrete (non-interface) type, the method's signature
// may not be fully set up. Call Checker.objDecl(obj, nil) before accessing
// the method's type.
// LookupFieldOrMethod looks up a field or method with given package and name
// in T and returns the corresponding *Var or *Func, an index sequence, and a
// bool indicating if there were any pointer indirections on the path to the
// field or method. If addressable is set, T is the type of an addressable
// variable (only matters for method lookups). T must not be nil.
//
// The last index entry is the field or method index in the (possibly embedded)
// type where the entry was found, either:
//
// 1. the list of declared methods of a named type; or
// 2. the list of all methods (method set) of an interface type; or
// 3. the list of fields of a struct type.
//
// The earlier index entries are the indices of the embedded struct fields
// traversed to get to the found entry, starting at depth 0.
//
// If no entry is found, a nil object is returned. In this case, the returned
// index and indirect values have the following meaning:
//
// - If index != nil, the index sequence points to an ambiguous entry
// (the same name appeared more than once at the same embedding level).
//
// - If indirect is set, a method with a pointer receiver type was found
// but there was no pointer on the path from the actual receiver type to
// the method's formal receiver base type, nor was the receiver addressable.
func ( Type, bool, *Package, string) ( Object, []int, bool) {
if == nil {
panic("LookupFieldOrMethod on nil type")
}
return lookupFieldOrMethod(, , , , false)
}
// lookupFieldOrMethod is like LookupFieldOrMethod but with the additional foldCase parameter
// (see Object.sameId for the meaning of foldCase).
func lookupFieldOrMethod( Type, bool, *Package, string, bool) ( Object, []int, bool) {
// Methods cannot be associated to a named pointer type.
// (spec: "The type denoted by T is called the receiver base type;
// it must not be a pointer or interface type and it must be declared
// in the same package as the method.").
// Thus, if we have a named pointer type, proceed with the underlying
// pointer type but discard the result if it is a method since we would
// not have found it for T (see also go.dev/issue/8590).
if := asNamed(); != nil {
if , := .Underlying().(*Pointer); != nil {
, , = lookupFieldOrMethodImpl(, false, , , )
if , := .(*Func); {
return nil, nil, false
}
return
}
}
, , = lookupFieldOrMethodImpl(, , , , )
// If we didn't find anything and if we have a type parameter with a core type,
// see if there is a matching field (but not a method, those need to be declared
// explicitly in the constraint). If the constraint is a named pointer type (see
// above), we are ok here because only fields are accepted as results.
const = false // see go.dev/issue/51576
if && == nil && isTypeParam() {
if := coreType(); != nil {
, , = lookupFieldOrMethodImpl(, , , , )
if , := .(*Var); ! {
, , = nil, nil, false // accept fields (variables) only
}
}
}
return
}
// lookupFieldOrMethodImpl is the implementation of lookupFieldOrMethod.
// Notably, in contrast to lookupFieldOrMethod, it won't find struct fields
// in base types of defined (*Named) pointer types T. For instance, given
// the declaration:
//
// type T *struct{f int}
//
// lookupFieldOrMethodImpl won't find the field f in the defined (*Named) type T
// (methods on T are not permitted in the first place).
//
// Thus, lookupFieldOrMethodImpl should only be called by lookupFieldOrMethod
// and missingMethod (the latter doesn't care about struct fields).
//
// The resulting object may not be fully type-checked.
func lookupFieldOrMethodImpl( Type, bool, *Package, string, bool) ( Object, []int, bool) {
// WARNING: The code in this function is extremely subtle - do not modify casually!
if == "_" {
return // blank fields/methods are never found
}
// Importantly, we must not call under before the call to deref below (nor
// does deref call under), as doing so could incorrectly result in finding
// methods of the pointer base type when T is a (*Named) pointer type.
, := deref()
// *typ where typ is an interface (incl. a type parameter) has no methods.
if {
if , := under().(*Interface); {
return
}
}
// Start with typ as single entry at shallowest depth.
:= []embeddedType{{, nil, , false}}
// seen tracks named types that we have seen already, allocated lazily.
// Used to avoid endless searches in case of recursive types.
//
// We must use a lookup on identity rather than a simple map[*Named]bool as
// instantiated types may be identical but not equal.
var instanceLookup
// search current depth
for len() > 0 {
var []embeddedType // embedded types found at current depth
// look for (pkg, name) in all types at current depth
for , := range {
:= .typ
// If we have a named type, we may have associated methods.
// Look for those first.
if := asNamed(); != nil {
if := .lookup(); != nil {
// We have seen this type before, at a more shallow depth
// (note that multiples of this type at the current depth
// were consolidated before). The type at that depth shadows
// this same type at the current depth, so we can ignore
// this one.
continue
}
.add()
// look for a matching attached method
if , := .lookupMethod(, , ); != nil {
// potential match
// caution: method may not have a proper signature yet
= concat(.index, )
if != nil || .multiples {
return nil, , false // collision
}
=
= .indirect
continue // we can't have a matching field or interface method
}
}
switch t := under().(type) {
case *Struct:
// look for a matching field and collect embedded types
for , := range .fields {
if .sameId(, , ) {
assert(.typ != nil)
= concat(.index, )
if != nil || .multiples {
return nil, , false // collision
}
=
= .indirect
continue // we can't have a matching interface method
}
// Collect embedded struct fields for searching the next
// lower depth, but only if we have not seen a match yet
// (if we have a match it is either the desired field or
// we have a name collision on the same depth; in either
// case we don't need to look further).
// Embedded fields are always of the form T or *T where
// T is a type name. If e.typ appeared multiple times at
// this depth, f.typ appears multiple times at the next
// depth.
if == nil && .embedded {
, := deref(.typ)
// TODO(gri) optimization: ignore types that can't
// have fields or methods (only Named, Struct, and
// Interface types need to be considered).
= append(, embeddedType{, concat(.index, ), .indirect || , .multiples})
}
}
case *Interface:
// look for a matching method (interface may be a type parameter)
if , := .typeSet().LookupMethod(, , ); != nil {
assert(.typ != nil)
= concat(.index, )
if != nil || .multiples {
return nil, , false // collision
}
=
= .indirect
}
}
}
if != nil {
// found a potential match
// spec: "A method call x.m() is valid if the method set of (the type of) x
// contains m and the argument list can be assigned to the parameter
// list of m. If x is addressable and &x's method set contains m, x.m()
// is shorthand for (&x).m()".
if , := .(*Func); != nil {
// determine if method has a pointer receiver
if .hasPtrRecv() && ! && ! {
return nil, nil, true // pointer/addressable receiver required
}
}
return
}
= consolidateMultiples()
}
return nil, nil, false // not found
}
// embeddedType represents an embedded type
type embeddedType struct {
typ Type
index []int // embedded field indices, starting with index at depth 0
indirect bool // if set, there was a pointer indirection on the path to this field
multiples bool // if set, typ appears multiple times at this depth
}
// consolidateMultiples collects multiple list entries with the same type
// into a single entry marked as containing multiples. The result is the
// consolidated list.
func consolidateMultiples( []embeddedType) []embeddedType {
if len() <= 1 {
return // at most one entry - nothing to do
}
:= 0 // number of entries w/ unique type
:= make(map[Type]int) // index at which type was previously seen
for , := range {
if , := lookupType(, .typ); {
[].multiples = true
// ignore this entry
} else {
[.typ] =
[] =
++
}
}
return [:]
}
func lookupType( map[Type]int, Type) (int, bool) {
// fast path: maybe the types are equal
if , := []; {
return , true
}
for , := range {
if Identical(, ) {
return , true
}
}
return 0, false
}
type instanceLookup struct {
// buf is used to avoid allocating the map m in the common case of a small
// number of instances.
buf [3]*Named
m map[*Named][]*Named
}
func ( *instanceLookup) ( *Named) *Named {
for , := range .buf {
if != nil && Identical(, ) {
return
}
}
for , := range .m[.Origin()] {
if Identical(, ) {
return
}
}
return nil
}
func ( *instanceLookup) ( *Named) {
for , := range .buf {
if == nil {
.buf[] =
return
}
}
if .m == nil {
.m = make(map[*Named][]*Named)
}
:= .m[.Origin()]
.m[.Origin()] = append(, )
}
// MissingMethod returns (nil, false) if V implements T, otherwise it
// returns a missing method required by T and whether it is missing or
// just has the wrong type: either a pointer receiver or wrong signature.
//
// For non-interface types V, or if static is set, V implements T if all
// methods of T are present in V. Otherwise (V is an interface and static
// is not set), MissingMethod only checks that methods of T which are also
// present in V have matching types (e.g., for a type assertion x.(T) where
// x is of interface type V).
func ( Type, *Interface, bool) ( *Func, bool) {
return (*Checker)(nil).missingMethod(, , , Identical, nil)
}
// missingMethod is like MissingMethod but accepts a *Checker as receiver,
// a comparator equivalent for type comparison, and a *string for error causes.
// The receiver may be nil if missingMethod is invoked through an exported
// API call (such as MissingMethod), i.e., when all methods have been type-
// checked.
// The underlying type of T must be an interface; T (rather than its under-
// lying type) is used for better error messages (reported through *cause).
// The comparator is used to compare signatures.
// If a method is missing and cause is not nil, *cause describes the error.
func ( *Checker) (, Type, bool, func(, Type) bool, *string) ( *Func, bool) {
:= under().(*Interface).typeSet().methods // T must be an interface
if len() == 0 {
return nil, false
}
const (
= iota
)
:=
var *Func // method on T we're trying to implement
var *Func // method on V, if found (state is one of ok, wrongName, wrongSig)
if , := under().(*Interface); != nil {
:= .typeSet()
for _, = range {
_, = .LookupMethod(.pkg, .name, false)
if == nil {
if ! {
continue
}
=
break
}
if !(.typ, .typ) {
=
break
}
}
} else {
for _, = range {
, , := lookupFieldOrMethodImpl(, false, .pkg, .name, false)
// check if m is ambiguous, on *V, or on V with case-folding
if == nil {
switch {
case != nil:
=
case :
=
default:
=
, _, _ = lookupFieldOrMethodImpl(, false, .pkg, .name, true /* fold case */)
, _ = .(*Func)
if != nil {
=
if .name == .name {
// If the names are equal, f must be unexported
// (otherwise the package wouldn't matter).
=
}
}
}
break
}
// we must have a method (not a struct field)
, _ = .(*Func)
if == nil {
=
break
}
// methods may not have a fully set up signature yet
if != nil {
.objDecl(, nil)
}
if !(.typ, .typ) {
=
break
}
}
}
if == {
return nil, false
}
if != nil {
if != nil {
// This method may be formatted in funcString below, so must have a fully
// set up signature.
if != nil {
.objDecl(, nil)
}
}
switch {
case :
switch {
case isInterfacePtr():
* = "(" + .interfacePtrError() + ")"
case isInterfacePtr():
* = "(" + .interfacePtrError() + ")"
default:
* = .sprintf("(missing method %s)", .Name())
}
case :
, := .funcString(, false), .funcString(, false)
* = .sprintf("(missing method %s)\n\t\thave %s\n\t\twant %s", .Name(), , )
case :
* = .sprintf("(unexported method %s)", .Name())
case :
, := .funcString(, false), .funcString(, false)
if == {
// Don't report "want Foo, have Foo".
// Add package information to disambiguate (go.dev/issue/54258).
, = .funcString(, true), .funcString(, true)
}
if == {
// We still have "want Foo, have Foo".
// This is most likely due to different type parameters with
// the same name appearing in the instantiated signatures
// (go.dev/issue/61685).
// Rather than reporting this misleading error cause, for now
// just point out that the method signature is incorrect.
// TODO(gri) should find a good way to report the root cause
* = .sprintf("(wrong type for method %s)", .Name())
break
}
* = .sprintf("(wrong type for method %s)\n\t\thave %s\n\t\twant %s", .Name(), , )
case :
* = .sprintf("(ambiguous selector %s.%s)", , .Name())
case :
* = .sprintf("(method %s has pointer receiver)", .Name())
case :
* = .sprintf("(%s.%s is a field, not a method)", , .Name())
default:
panic("unreachable")
}
}
return , == || ==
}
// hasAllMethods is similar to checkMissingMethod but instead reports whether all methods are present.
// If V is not a valid type, or if it is a struct containing embedded fields with invalid types, the
// result is true because it is not possible to say with certainty whether a method is missing or not
// (an embedded field may have the method in question).
// If the result is false and cause is not nil, *cause describes the error.
// Use hasAllMethods to avoid follow-on errors due to incorrect types.
func ( *Checker) (, Type, bool, func(, Type) bool, *string) bool {
if !isValid() {
return true // we don't know anything about V, assume it implements T
}
, := .missingMethod(, , , , )
return == nil || hasInvalidEmbeddedFields(, nil)
}
// hasInvalidEmbeddedFields reports whether T is a struct (or a pointer to a struct) that contains
// (directly or indirectly) embedded fields with invalid types.
func hasInvalidEmbeddedFields( Type, map[*Struct]bool) bool {
if , := under(derefStructPtr()).(*Struct); != nil && ![] {
if == nil {
= make(map[*Struct]bool)
}
[] = true
for , := range .fields {
if .embedded && (!isValid(.typ) || (.typ, )) {
return true
}
}
}
return false
}
func isInterfacePtr( Type) bool {
, := under().(*Pointer)
return != nil && IsInterface(.base)
}
// check may be nil.
func ( *Checker) ( Type) string {
assert(isInterfacePtr())
if , := under().(*Pointer); isTypeParam(.base) {
return .sprintf("type %s is pointer to type parameter, not type parameter", )
}
return .sprintf("type %s is pointer to interface, not interface", )
}
// funcString returns a string of the form name + signature for f.
// check may be nil.
func ( *Checker) ( *Func, bool) string {
:= bytes.NewBufferString(.name)
var Qualifier
if != nil && ! {
= .qualifier
}
:= newTypeWriter(, )
.pkgInfo =
.paramNames = false
.signature(.typ.(*Signature))
return .String()
}
// assertableTo reports whether a value of type V can be asserted to have type T.
// The receiver may be nil if assertableTo is invoked through an exported API call
// (such as AssertableTo), i.e., when all methods have been type-checked.
// The underlying type of V must be an interface.
// If the result is false and cause is not nil, *cause describes the error.
// TODO(gri) replace calls to this function with calls to newAssertableTo.
func ( *Checker) (, Type, *string) bool {
// no static check is required if T is an interface
// spec: "If T is an interface type, x.(T) asserts that the
// dynamic type of x implements the interface T."
if IsInterface() {
return true
}
// TODO(gri) fix this for generalized interfaces
return .hasAllMethods(, , false, Identical, )
}
// newAssertableTo reports whether a value of type V can be asserted to have type T.
// It also implements behavior for interfaces that currently are only permitted
// in constraint position (we have not yet defined that behavior in the spec).
// The underlying type of V must be an interface.
// If the result is false and cause is not nil, *cause is set to the error cause.
func ( *Checker) (, Type, *string) bool {
// no static check is required if T is an interface
// spec: "If T is an interface type, x.(T) asserts that the
// dynamic type of x implements the interface T."
if IsInterface() {
return true
}
return .implements(, , false, )
}
// deref dereferences typ if it is a *Pointer (but not a *Named type
// with an underlying pointer type!) and returns its base and true.
// Otherwise it returns (typ, false).
func deref( Type) (Type, bool) {
if , := Unalias().(*Pointer); != nil {
// p.base should never be nil, but be conservative
if .base == nil {
if debug {
panic("pointer with nil base type (possibly due to an invalid cyclic declaration)")
}
return Typ[Invalid], true
}
return .base, true
}
return , false
}
// derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
// (named or unnamed) struct and returns its base. Otherwise it returns typ.
func derefStructPtr( Type) Type {
if , := under().(*Pointer); != nil {
if , := under(.base).(*Struct); {
return .base
}
}
return
}
// concat returns the result of concatenating list and i.
// The result does not share its underlying array with list.
func concat( []int, int) []int {
var []int
= append(, ...)
return append(, )
}
// fieldIndex returns the index for the field with matching package and name, or a value < 0.
// See Object.sameId for the meaning of foldCase.
func fieldIndex( []*Var, *Package, string, bool) int {
if != "_" {
for , := range {
if .sameId(, , ) {
return
}
}
}
return -1
}
// methodIndex returns the index of and method with matching package and name, or (-1, nil).
// See Object.sameId for the meaning of foldCase.
func methodIndex( []*Func, *Package, string, bool) (int, *Func) {
if != "_" {
for , := range {
if .sameId(, , ) {
return ,
}
}
}
return -1, nil
}
The pages are generated with Golds v0.7.3. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |