package types

Import Path
	go/types (on golang.org and go.dev)

Dependency Relation
	imports 14 packages, and imported by 4 packages

Involved Source Files
	d-> api.go
	    assignments.go
	    builtins.go
	    call.go
	    check.go
	    conversions.go
	    decl.go
	    errors.go
	    eval.go
	    expr.go
	    exprstring.go
	    gccgosizes.go
	    initorder.go
	    labels.go
	    lookup.go
	    methodset.go
	    object.go
	    objset.go
	    operand.go
	    package.go
	    predicates.go
	    resolver.go
	    return.go
	    scope.go
	    selection.go
	    sizes.go
	    stmt.go
	    type.go
	    typestring.go
	    typexpr.go
	    universe.go

Exported Type Names

type Array (struct) An Array represents an array type. Elem returns element type of array a. Len returns the length of array a. A negative result indicates an unknown length. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewArray(elem Type, len int64) *Array
type Basic (struct) A Basic represents a basic type. Info returns information about properties of basic type b. Kind returns the kind of basic type b. Name returns the name of basic type b. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer
type BasicInfo int BasicInfo is a set of flags describing properties of a basic type. func (*Basic).Info() BasicInfo const IsBoolean const IsComplex const IsConstType const IsFloat const IsInteger const IsNumeric const IsOrdered const IsString const IsUnsigned const IsUntyped
type BasicKind int BasicKind describes the kind of basic type. func (*Basic).Kind() BasicKind const Bool const Byte const Complex128 const Complex64 const Float32 const Float64 const Int const Int16 const Int32 const Int64 const Int8 const Invalid const Rune const String const Uint const Uint16 const Uint32 const Uint64 const Uint8 const Uintptr const UnsafePointer const UntypedBool const UntypedComplex const UntypedFloat const UntypedInt const UntypedNil const UntypedRune const UntypedString
type Builtin (struct) A Builtin represents a built-in function. Builtins don't have a valid type. Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not. Id is a wrapper for Id(obj.Pkg(), obj.Name()). Name returns the object's (package-local, unqualified) name. Parent returns the scope in which the object is declared. The result is nil for methods and struct fields. Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope. Pos returns the declaration position of the object's identifier. (*T) String() string Type returns the object's type. *T : Object *T : expvar.Var *T : fmt.Stringer
type Chan (struct) A Chan represents a channel type. Dir returns the direction of channel c. Elem returns the element type of channel c. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewChan(dir ChanDir, elem Type) *Chan
type ChanDir int A ChanDir value indicates a channel direction. func (*Chan).Dir() ChanDir func NewChan(dir ChanDir, elem Type) *Chan const RecvOnly const SendOnly const SendRecv
type Checker (struct) A Checker maintains the state of the type checker. It must be created with NewChecker. Info *Info Defs maps identifiers to the objects they define (including package names, dots "." of dot-imports, and blank "_" identifiers). For identifiers that do not denote objects (e.g., the package name in package clauses, or symbolic variables t in t := x.(type) of type switch headers), the corresponding objects are nil. For an embedded field, Defs returns the field *Var it defines. Invariant: Defs[id] == nil || Defs[id].Pos() == id.Pos() Implicits maps nodes to their implicitly declared objects, if any. The following node and object types may appear: node declared object *ast.ImportSpec *PkgName for imports without renames *ast.CaseClause type-specific *Var for each type switch case clause (incl. default) *ast.Field anonymous parameter *Var (incl. unnamed results) InitOrder is the list of package-level initializers in the order in which they must be executed. Initializers referring to variables related by an initialization dependency appear in topological order, the others appear in source order. Variables without an initialization expression do not appear in this list. Scopes maps ast.Nodes to the scopes they define. Package scopes are not associated with a specific node but with all files belonging to a package. Thus, the package scope can be found in the type-checked Package object. Scopes nest, with the Universe scope being the outermost scope, enclosing the package scope, which contains (one or more) files scopes, which enclose function scopes which in turn enclose statement and function literal scopes. Note that even though package-level functions are declared in the package scope, the function scopes are embedded in the file scope of the file containing the function declaration. The following node types may appear in Scopes: *ast.File *ast.FuncType *ast.BlockStmt *ast.IfStmt *ast.SwitchStmt *ast.TypeSwitchStmt *ast.CaseClause *ast.CommClause *ast.ForStmt *ast.RangeStmt Selections maps selector expressions (excluding qualified identifiers) to their corresponding selections. Types maps expressions to their types, and for constant expressions, also their values. Invalid expressions are omitted. For (possibly parenthesized) identifiers denoting built-in functions, the recorded signatures are call-site specific: if the call result is not a constant, the recorded type is an argument-specific signature. Otherwise, the recorded type is invalid. The Types map does not record the type of every identifier, only those that appear where an arbitrary expression is permitted. For instance, the identifier f in a selector expression x.f is found only in the Selections map, the identifier z in a variable declaration 'var z int' is found only in the Defs map, and identifiers denoting packages in qualified identifiers are collected in the Uses map. Uses maps identifiers to the objects they denote. For an embedded field, Uses returns the *TypeName it denotes. Invariant: Uses[id].Pos() != id.Pos() Files checks the provided files as part of the checker's package. ObjectOf returns the object denoted by the specified id, or nil if not found. If id is an embedded struct field, ObjectOf returns the field (*Var) it defines, not the type (*TypeName) it uses. Precondition: the Uses and Defs maps are populated. TypeOf returns the type of expression e, or nil if not found. Precondition: the Types, Uses and Defs maps are populated. func NewChecker(conf *Config, fset *token.FileSet, pkg *Package, info *Info) *Checker
type Config (struct) A Config specifies the configuration for type checking. The zero value for Config is a ready-to-use default configuration. If DisableUnusedImportCheck is set, packages are not checked for unused imports. If Error != nil, it is called with each error found during type checking; err has dynamic type Error. Secondary errors (for instance, to enumerate all types involved in an invalid recursive type declaration) have error strings that start with a '\t' character. If Error == nil, type-checking stops with the first error found. If FakeImportC is set, `import "C"` (for packages requiring Cgo) declares an empty "C" package and errors are omitted for qualified identifiers referring to package C (which won't find an object). This feature is intended for the standard library cmd/api tool. Caution: Effects may be unpredictable due to follow-on errors. Do not use casually! If IgnoreFuncBodies is set, function bodies are not type-checked. An importer is used to import packages referred to from import declarations. If the installed importer implements ImporterFrom, the type checker calls ImportFrom instead of Import. The type checker reports an error if an importer is needed but none was installed. If Sizes != nil, it provides the sizing functions for package unsafe. Otherwise SizesFor("gc", "amd64") is used instead. Check type-checks a package and returns the resulting package object and the first error if any. Additionally, if info != nil, Check populates each of the non-nil maps in the Info struct. The package is marked as complete if no errors occurred, otherwise it is incomplete. See Config.Error for controlling behavior in the presence of errors. The package is specified by a list of *ast.Files and corresponding file set, and the package path the package is identified with. The clean path must not be empty or dot ("."). func NewChecker(conf *Config, fset *token.FileSet, pkg *Package, info *Info) *Checker
type Const (struct) A Const represents a declared constant. Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not. Id is a wrapper for Id(obj.Pkg(), obj.Name()). Name returns the object's (package-local, unqualified) name. Parent returns the scope in which the object is declared. The result is nil for methods and struct fields. Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope. Pos returns the declaration position of the object's identifier. (*T) String() string Type returns the object's type. Val returns the constant's value. *T : Object *T : expvar.Var *T : fmt.Stringer func NewConst(pos token.Pos, pkg *Package, name string, typ Type, val constant.Value) *Const
type Error (struct) An Error describes a type-checking error; it implements the error interface. A "soft" error is an error that still permits a valid interpretation of a package (such as "unused variable"); "hard" errors may lead to unpredictable behavior if ignored. // file set for interpretation of Pos // error message // error position // if set, error is "soft" Error returns an error string formatted as follows: filename:line:column: message T : error
type Func (struct) A Func represents a declared function, concrete method, or abstract (interface) method. Its Type() is always a *Signature. An abstract method may belong to many interfaces due to embedding. Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not. FullName returns the package- or receiver-type-qualified name of function or method obj. Id is a wrapper for Id(obj.Pkg(), obj.Name()). Name returns the object's (package-local, unqualified) name. Parent returns the scope in which the object is declared. The result is nil for methods and struct fields. Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope. Pos returns the declaration position of the object's identifier. Scope returns the scope of the function's body block. (*T) String() string Type returns the object's type. *T : Object *T : expvar.Var *T : fmt.Stringer func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) func NewFunc(pos token.Pos, pkg *Package, name string, sig *Signature) *Func func (*Interface).ExplicitMethod(i int) *Func func (*Interface).Method(i int) *Func func (*Named).Method(i int) *Func func NewInterface(methods []*Func, embeddeds []*Named) *Interface func NewInterfaceType(methods []*Func, embeddeds []Type) *Interface func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named func (*Named).AddMethod(m *Func)
type Importer (interface) An Importer resolves import paths to Packages. CAUTION: This interface does not support the import of locally vendored packages. See https://golang.org/s/go15vendor. If possible, external implementations should implement ImporterFrom. Import returns the imported package for the given import path. The semantics is like for ImporterFrom.ImportFrom except that dir and mode are ignored (since they are not present). ImporterFrom (interface) go/internal/srcimporter.(*Importer) func go/importer.Default() Importer func go/importer.For(compiler string, lookup importer.Lookup) Importer func go/importer.ForCompiler(fset *token.FileSet, compiler string, lookup importer.Lookup) Importer
type ImporterFrom (interface) An ImporterFrom resolves import paths to packages; it supports vendoring per https://golang.org/s/go15vendor. Use go/importer to obtain an ImporterFrom implementation. Import returns the imported package for the given import path. The semantics is like for ImporterFrom.ImportFrom except that dir and mode are ignored (since they are not present). ImportFrom returns the imported package for the given import path when imported by a package file located in dir. If the import failed, besides returning an error, ImportFrom is encouraged to cache and return a package anyway, if one was created. This will reduce package inconsistencies and follow-on type checker errors due to the missing package. The mode value must be 0; it is reserved for future use. Two calls to ImportFrom with the same path and dir must return the same package. go/internal/srcimporter.(*Importer) T : Importer
type ImportMode int ImportMode is reserved for future use. func ImporterFrom.ImportFrom(path, dir string, mode ImportMode) (*Package, error) func go/internal/srcimporter.(*Importer).ImportFrom(path, srcDir string, mode ImportMode) (*Package, error)
type Info (struct) Info holds result type information for a type-checked package. Only the information for which a map is provided is collected. If the package has type errors, the collected information may be incomplete. Defs maps identifiers to the objects they define (including package names, dots "." of dot-imports, and blank "_" identifiers). For identifiers that do not denote objects (e.g., the package name in package clauses, or symbolic variables t in t := x.(type) of type switch headers), the corresponding objects are nil. For an embedded field, Defs returns the field *Var it defines. Invariant: Defs[id] == nil || Defs[id].Pos() == id.Pos() Implicits maps nodes to their implicitly declared objects, if any. The following node and object types may appear: node declared object *ast.ImportSpec *PkgName for imports without renames *ast.CaseClause type-specific *Var for each type switch case clause (incl. default) *ast.Field anonymous parameter *Var (incl. unnamed results) InitOrder is the list of package-level initializers in the order in which they must be executed. Initializers referring to variables related by an initialization dependency appear in topological order, the others appear in source order. Variables without an initialization expression do not appear in this list. Scopes maps ast.Nodes to the scopes they define. Package scopes are not associated with a specific node but with all files belonging to a package. Thus, the package scope can be found in the type-checked Package object. Scopes nest, with the Universe scope being the outermost scope, enclosing the package scope, which contains (one or more) files scopes, which enclose function scopes which in turn enclose statement and function literal scopes. Note that even though package-level functions are declared in the package scope, the function scopes are embedded in the file scope of the file containing the function declaration. The following node types may appear in Scopes: *ast.File *ast.FuncType *ast.BlockStmt *ast.IfStmt *ast.SwitchStmt *ast.TypeSwitchStmt *ast.CaseClause *ast.CommClause *ast.ForStmt *ast.RangeStmt Selections maps selector expressions (excluding qualified identifiers) to their corresponding selections. Types maps expressions to their types, and for constant expressions, also their values. Invalid expressions are omitted. For (possibly parenthesized) identifiers denoting built-in functions, the recorded signatures are call-site specific: if the call result is not a constant, the recorded type is an argument-specific signature. Otherwise, the recorded type is invalid. The Types map does not record the type of every identifier, only those that appear where an arbitrary expression is permitted. For instance, the identifier f in a selector expression x.f is found only in the Selections map, the identifier z in a variable declaration 'var z int' is found only in the Defs map, and identifiers denoting packages in qualified identifiers are collected in the Uses map. Uses maps identifiers to the objects they denote. For an embedded field, Uses returns the *TypeName it denotes. Invariant: Uses[id].Pos() != id.Pos() ObjectOf returns the object denoted by the specified id, or nil if not found. If id is an embedded struct field, ObjectOf returns the field (*Var) it defines, not the type (*TypeName) it uses. Precondition: the Uses and Defs maps are populated. TypeOf returns the type of expression e, or nil if not found. Precondition: the Types, Uses and Defs maps are populated. func CheckExpr(fset *token.FileSet, pkg *Package, pos token.Pos, expr ast.Expr, info *Info) (err error) func NewChecker(conf *Config, fset *token.FileSet, pkg *Package, info *Info) *Checker func (*Config).Check(path string, fset *token.FileSet, files []*ast.File, info *Info) (*Package, error)
type Initializer (struct) An Initializer describes a package-level variable, or a list of variables in case of a multi-valued initialization expression, and the corresponding initialization expression. // var Lhs = Rhs Rhs ast.Expr (*T) String() string *T : expvar.Var *T : fmt.Stringer
type Interface (struct) An Interface represents an interface type. Complete computes the interface's method set. It must be called by users of NewInterfaceType and NewInterface after the interface's embedded types are fully defined and before using the interface type in any way other than to form other types. The interface must not contain duplicate methods or a panic occurs. Complete returns the receiver. Embedded returns the i'th embedded defined (*Named) type of interface t for 0 <= i < t.NumEmbeddeds(). The result is nil if the i'th embedded type is not a defined type. Deprecated: Use EmbeddedType which is not restricted to defined (*Named) types. EmbeddedType returns the i'th embedded type of interface t for 0 <= i < t.NumEmbeddeds(). Empty reports whether t is the empty interface. The interface must have been completed. ExplicitMethod returns the i'th explicitly declared method of interface t for 0 <= i < t.NumExplicitMethods(). The methods are ordered by their unique Id. Method returns the i'th method of interface t for 0 <= i < t.NumMethods(). The methods are ordered by their unique Id. The interface must have been completed. NumEmbeddeds returns the number of embedded types in interface t. NumExplicitMethods returns the number of explicitly declared methods of interface t. NumMethods returns the total number of methods of interface t. The interface must have been completed. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewInterface(methods []*Func, embeddeds []*Named) *Interface func NewInterfaceType(methods []*Func, embeddeds []Type) *Interface func (*Interface).Complete() *Interface func AssertableTo(V *Interface, T Type) bool func Implements(V Type, T *Interface) bool func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool)
type Label (struct) A Label represents a declared label. Labels don't have a type. Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not. Id is a wrapper for Id(obj.Pkg(), obj.Name()). Name returns the object's (package-local, unqualified) name. Parent returns the scope in which the object is declared. The result is nil for methods and struct fields. Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope. Pos returns the declaration position of the object's identifier. (*T) String() string Type returns the object's type. *T : Object *T : expvar.Var *T : fmt.Stringer func NewLabel(pos token.Pos, pkg *Package, name string) *Label
type Map (struct) A Map represents a map type. Elem returns the element type of map m. Key returns the key type of map m. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewMap(key, elem Type) *Map
type MethodSet (struct) A MethodSet is an ordered set of concrete or abstract (interface) methods; a method is a MethodVal selection, and they are ordered by ascending m.Obj().Id(). The zero value for a MethodSet is a ready-to-use empty method set. At returns the i'th method in s for 0 <= i < s.Len(). Len returns the number of methods in s. Lookup returns the method with matching package and name, or nil if not found. (*T) String() string *T : expvar.Var *T : fmt.Stringer func NewMethodSet(T Type) *MethodSet
type Named (struct) A Named represents a named type. AddMethod adds method m unless it is already in the method list. Method returns the i'th method of named type t for 0 <= i < t.NumMethods(). NumMethods returns the number of explicit methods whose receiver is named type t. Obj returns the type name for the named type t. SetUnderlying sets the underlying type and marks t as complete. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named func (*Interface).Embedded(i int) *Named func NewInterface(methods []*Func, embeddeds []*Named) *Interface
type Nil (struct) Nil represents the predeclared value nil. Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not. Id is a wrapper for Id(obj.Pkg(), obj.Name()). Name returns the object's (package-local, unqualified) name. Parent returns the scope in which the object is declared. The result is nil for methods and struct fields. Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope. Pos returns the declaration position of the object's identifier. (*T) String() string Type returns the object's type. *T : Object *T : expvar.Var *T : fmt.Stringer
type Object (interface) An Object describes a named language entity such as a package, constant, type, variable, function (incl. methods), or label. All objects implement the Object interface. // reports whether the name starts with a capital letter // object name if exported, qualified name if not exported (see func Id) // package local object name // scope in which this object is declared; nil for methods and struct fields // package to which this object belongs; nil for labels and objects in the Universe scope // position of object identifier in declaration String returns a human-readable string of the object. // object type *Builtin *Const *Func *Label *Nil *PkgName *TypeName *Var T : expvar.Var T : fmt.Stringer func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) func (*Info).ObjectOf(id *ast.Ident) Object func (*Scope).Insert(obj Object) Object func (*Scope).Lookup(name string) Object func (*Scope).LookupParent(name string, pos token.Pos) (*Scope, Object) func (*Selection).Obj() Object func ObjectString(obj Object, qf Qualifier) string func (*Scope).Insert(obj Object) Object
type Package (struct) A Package describes a Go package. A package is complete if its scope contains (at least) all exported objects; otherwise it is incomplete. Imports returns the list of packages directly imported by pkg; the list is in source order. If pkg was loaded from export data, Imports includes packages that provide package-level objects referenced by pkg. This may be more or less than the set of packages directly imported by pkg's source code. MarkComplete marks a package as complete. Name returns the package name. Path returns the package path. Scope returns the (complete or incomplete) package scope holding the objects declared at package level (TypeNames, Consts, Vars, and Funcs). SetImports sets the list of explicitly imported packages to list. It is the caller's responsibility to make sure list elements are unique. SetName sets the package name. (*T) String() string *T : expvar.Var *T : fmt.Stringer func NewPackage(path, name string) *Package func (*Config).Check(path string, fset *token.FileSet, files []*ast.File, info *Info) (*Package, error) func Importer.Import(path string) (*Package, error) func ImporterFrom.Import(path string) (*Package, error) func ImporterFrom.ImportFrom(path, dir string, mode ImportMode) (*Package, error) func Object.Pkg() *Package func (*Package).Imports() []*Package func (*PkgName).Imported() *Package func go/internal/gcimporter.Import(fset *token.FileSet, packages map[string]*Package, path, srcDir string, lookup func(path string) (io.ReadCloser, error)) (pkg *Package, err error) func go/internal/srcimporter.(*Importer).Import(path string) (*Package, error) func go/internal/srcimporter.(*Importer).ImportFrom(path, srcDir string, mode ImportMode) (*Package, error) func CheckExpr(fset *token.FileSet, pkg *Package, pos token.Pos, expr ast.Expr, info *Info) (err error) func Eval(fset *token.FileSet, pkg *Package, pos token.Pos, expr string) (_ TypeAndValue, err error) func Id(pkg *Package, name string) string func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) func NewChecker(conf *Config, fset *token.FileSet, pkg *Package, info *Info) *Checker func NewConst(pos token.Pos, pkg *Package, name string, typ Type, val constant.Value) *Const func NewField(pos token.Pos, pkg *Package, name string, typ Type, embedded bool) *Var func NewFunc(pos token.Pos, pkg *Package, name string, sig *Signature) *Func func NewLabel(pos token.Pos, pkg *Package, name string) *Label func NewParam(pos token.Pos, pkg *Package, name string, typ Type) *Var func NewPkgName(pos token.Pos, pkg *Package, name string, imported *Package) *PkgName func NewPkgName(pos token.Pos, pkg *Package, name string, imported *Package) *PkgName func NewTypeName(pos token.Pos, pkg *Package, name string, typ Type) *TypeName func NewVar(pos token.Pos, pkg *Package, name string, typ Type) *Var func RelativeTo(pkg *Package) Qualifier func (*MethodSet).Lookup(pkg *Package, name string) *Selection func (*Package).SetImports(list []*Package) func go/internal/gccgoimporter.GetImporter(searchpaths []string, initmap map[*Package]gccgoimporter.InitData) gccgoimporter.Importer func go/internal/gccgoimporter.(*GccgoInstallation).GetImporter(incpaths []string, initmap map[*Package]gccgoimporter.InitData) gccgoimporter.Importer func go/internal/gcimporter.Import(fset *token.FileSet, packages map[string]*Package, path, srcDir string, lookup func(path string) (io.ReadCloser, error)) (pkg *Package, err error) func go/internal/srcimporter.New(ctxt *build.Context, fset *token.FileSet, packages map[string]*Package) *srcimporter.Importer var Unsafe *Package
type PkgName (struct) A PkgName represents an imported Go package. PkgNames don't have a type. Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not. Id is a wrapper for Id(obj.Pkg(), obj.Name()). Imported returns the package that was imported. It is distinct from Pkg(), which is the package containing the import statement. Name returns the object's (package-local, unqualified) name. Parent returns the scope in which the object is declared. The result is nil for methods and struct fields. Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope. Pos returns the declaration position of the object's identifier. (*T) String() string Type returns the object's type. *T : Object *T : expvar.Var *T : fmt.Stringer func NewPkgName(pos token.Pos, pkg *Package, name string, imported *Package) *PkgName
type Pointer (struct) A Pointer represents a pointer type. Elem returns the element type for the given pointer p. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewPointer(elem Type) *Pointer
type Qualifier (func) A Qualifier controls how named package-level objects are printed in calls to TypeString, ObjectString, and SelectionString. These three formatting routines call the Qualifier for each package-level object O, and if the Qualifier returns a non-empty string p, the object is printed in the form p.O. If it returns an empty string, only the object name O is printed. Using a nil Qualifier is equivalent to using (*Package).Path: the object is qualified by the import path, e.g., "encoding/json.Marshal". func RelativeTo(pkg *Package) Qualifier func ObjectString(obj Object, qf Qualifier) string func SelectionString(s *Selection, qf Qualifier) string func TypeString(typ Type, qf Qualifier) string func WriteSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier) func WriteType(buf *bytes.Buffer, typ Type, qf Qualifier)
type Scope (struct) A Scope maintains a set of objects and links to its containing (parent) and contained (children) scopes. Objects may be inserted and looked up by name. The zero value for Scope is a ready-to-use empty scope. Child returns the i'th child scope for 0 <= i < NumChildren(). Contains reports whether pos is within the scope's extent. The result is guaranteed to be valid only if the type-checked AST has complete position information. (*T) End() token.Pos Innermost returns the innermost (child) scope containing pos. If pos is not within any scope, the result is nil. The result is also nil for the Universe scope. The result is guaranteed to be valid only if the type-checked AST has complete position information. Insert attempts to insert an object obj into scope s. If s already contains an alternative object alt with the same name, Insert leaves s unchanged and returns alt. Otherwise it inserts obj, sets the object's parent scope if not already set, and returns nil. Len returns the number of scope elements. Lookup returns the object in scope s with the given name if such an object exists; otherwise the result is nil. LookupParent follows the parent chain of scopes starting with s until it finds a scope where Lookup(name) returns a non-nil object, and then returns that scope and object. If a valid position pos is provided, only objects that were declared at or before pos are considered. If no such scope and object exists, the result is (nil, nil). Note that obj.Parent() may be different from the returned scope if the object was inserted into the scope and already had a parent at that time (see Insert). This can only happen for dot-imported objects whose scope is the scope of the package that exported them. Names returns the scope's element names in sorted order. NumChildren returns the number of scopes nested in s. Parent returns the scope's containing (parent) scope. Pos and End describe the scope's source code extent [pos, end). The results are guaranteed to be valid only if the type-checked AST has complete position information. The extent is undefined for Universe and package scopes. String returns a string representation of the scope, for debugging. WriteTo writes a string representation of the scope to w, with the scope elements sorted by name. The level of indentation is controlled by n >= 0, with n == 0 for no indentation. If recurse is set, it also writes nested (children) scopes. *T : go/ast.Node *T : expvar.Var *T : fmt.Stringer func NewScope(parent *Scope, pos, end token.Pos, comment string) *Scope func (*Func).Scope() *Scope func Object.Parent() *Scope func (*Package).Scope() *Scope func (*Scope).Child(i int) *Scope func (*Scope).Innermost(pos token.Pos) *Scope func (*Scope).LookupParent(name string, pos token.Pos) (*Scope, Object) func (*Scope).Parent() *Scope func NewScope(parent *Scope, pos, end token.Pos, comment string) *Scope var Universe *Scope
type Selection (struct) A Selection describes a selector expression x.f. For the declarations: type T struct{ x int; E } type E struct{} func (e E) m() {} var p *T the following relations exist: Selector Kind Recv Obj Type Index Indirect p.x FieldVal T x int {0} true p.m MethodVal *T m func() {1, 0} true T.m MethodExpr T m func(T) {1, 0} false Index describes the path from x to f in x.f. The last index entry is the field or method index of the type declaring f; either: 1) the list of declared methods of a named type; or 2) the list of methods of an interface type; or 3) the list of fields of a struct type. The earlier index entries are the indices of the embedded fields implicitly traversed to get from (the type of) x to f, starting at embedding depth 0. Indirect reports whether any pointer indirection was required to get from x to f in x.f. Kind returns the selection kind. Obj returns the object denoted by x.f; a *Var for a field selection, and a *Func in all other cases. Recv returns the type of x in x.f. (*T) String() string Type returns the type of x.f, which may be different from the type of f. See Selection for more information. *T : expvar.Var *T : fmt.Stringer func (*MethodSet).At(i int) *Selection func (*MethodSet).Lookup(pkg *Package, name string) *Selection func SelectionString(s *Selection, qf Qualifier) string
type SelectionKind int SelectionKind describes the kind of a selector expression x.f (excluding qualified identifiers). func (*Selection).Kind() SelectionKind const FieldVal const MethodExpr const MethodVal
type Signature (struct) A Signature represents a (non-builtin) function or method type. The receiver is ignored when comparing signatures for identity. Params returns the parameters of signature s, or nil. Recv returns the receiver of signature s (if a method), or nil if a function. It is ignored when comparing signatures for identity. For an abstract method, Recv returns the enclosing interface either as a *Named or an *Interface. Due to embedding, an interface may contain methods whose receiver type is a different interface. Results returns the results of signature s, or nil. (*T) String() string (*T) Underlying() Type Variadic reports whether the signature s is variadic. *T : Type *T : expvar.Var *T : fmt.Stringer func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature func NewFunc(pos token.Pos, pkg *Package, name string, sig *Signature) *Func func WriteSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier)
type Sizes (interface) Sizes defines the sizing functions for package unsafe. Alignof returns the alignment of a variable of type T. Alignof must implement the alignment guarantees required by the spec. Offsetsof returns the offsets of the given struct fields, in bytes. Offsetsof must implement the offset guarantees required by the spec. Sizeof returns the size of a variable of type T. Sizeof must implement the size guarantees required by the spec. *StdSizes func SizesFor(compiler, arch string) Sizes
type Slice (struct) A Slice represents a slice type. Elem returns the element type of slice s. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewSlice(elem Type) *Slice
type StdSizes (struct) StdSizes is a convenience type for creating commonly used Sizes. It makes the following simplifying assumptions: - The size of explicitly sized basic types (int16, etc.) is the specified size. - The size of strings and interfaces is 2*WordSize. - The size of slices is 3*WordSize. - The size of an array of n elements corresponds to the size of a struct of n consecutive fields of the array's element type. - The size of a struct is the offset of the last field plus that field's size. As with all element types, if the struct is used in an array its size must first be aligned to a multiple of the struct's alignment. - All other types have size WordSize. - Arrays and structs are aligned per spec definition; all other types are naturally aligned with a maximum alignment MaxAlign. *StdSizes implements Sizes. // maximum alignment in bytes - must be >= 1 // word size in bytes - must be >= 4 (32bits) (*T) Alignof(T Type) int64 (*T) Offsetsof(fields []*Var) []int64 (*T) Sizeof(T Type) int64 *T : Sizes
type Struct (struct) A Struct represents a struct type. Field returns the i'th field for 0 <= i < NumFields(). NumFields returns the number of fields in the struct (including blank and embedded fields). (*T) String() string Tag returns the i'th field tag for 0 <= i < NumFields(). (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewStruct(fields []*Var, tags []string) *Struct
type Tuple (struct) A Tuple represents an ordered list of variables; a nil *Tuple is a valid (empty) tuple. Tuples are used as components of signatures and to represent the type of multiple assignments; they are not first class types of Go. At returns the i'th variable of tuple t. Len returns the number variables of tuple t. (*T) String() string (*T) Underlying() Type *T : Type *T : expvar.Var *T : fmt.Stringer func NewTuple(x ...*Var) *Tuple func (*Signature).Params() *Tuple func (*Signature).Results() *Tuple func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature
type Type (interface) A Type represents a type of Go. All types implement the Type interface. String returns a string representation of a type. Underlying returns the underlying type of a type. *Array *Basic *Chan *Interface *Map *Named *Pointer *Signature *Slice *Struct *Tuple T : expvar.Var T : fmt.Stringer func Default(typ Type) Type func (*Array).Elem() Type func (*Array).Underlying() Type func (*Basic).Underlying() Type func (*Chan).Elem() Type func (*Chan).Underlying() Type func (*Info).TypeOf(e ast.Expr) Type func (*Interface).EmbeddedType(i int) Type func (*Interface).Underlying() Type func (*Map).Elem() Type func (*Map).Key() Type func (*Map).Underlying() Type func (*Named).Underlying() Type func Object.Type() Type func (*Pointer).Elem() Type func (*Pointer).Underlying() Type func (*Selection).Recv() Type func (*Selection).Type() Type func (*Signature).Underlying() Type func (*Slice).Elem() Type func (*Slice).Underlying() Type func (*Struct).Underlying() Type func (*Tuple).Underlying() Type func Type.Underlying() Type func AssertableTo(V *Interface, T Type) bool func AssignableTo(V, T Type) bool func Comparable(T Type) bool func ConvertibleTo(V, T Type) bool func Default(typ Type) Type func Identical(x, y Type) bool func IdenticalIgnoreTags(x, y Type) bool func Implements(V Type, T *Interface) bool func IsInterface(typ Type) bool func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) func NewArray(elem Type, len int64) *Array func NewChan(dir ChanDir, elem Type) *Chan func NewConst(pos token.Pos, pkg *Package, name string, typ Type, val constant.Value) *Const func NewField(pos token.Pos, pkg *Package, name string, typ Type, embedded bool) *Var func NewInterfaceType(methods []*Func, embeddeds []Type) *Interface func NewMap(key, elem Type) *Map func NewMethodSet(T Type) *MethodSet func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named func NewParam(pos token.Pos, pkg *Package, name string, typ Type) *Var func NewPointer(elem Type) *Pointer func NewSlice(elem Type) *Slice func NewTypeName(pos token.Pos, pkg *Package, name string, typ Type) *TypeName func NewVar(pos token.Pos, pkg *Package, name string, typ Type) *Var func TypeString(typ Type, qf Qualifier) string func WriteType(buf *bytes.Buffer, typ Type, qf Qualifier) func (*Named).SetUnderlying(underlying Type) func Sizes.Alignof(T Type) int64 func Sizes.Sizeof(T Type) int64 func (*StdSizes).Alignof(T Type) int64 func (*StdSizes).Sizeof(T Type) int64
type TypeAndValue (struct) TypeAndValue reports the type and value (for constants) of the corresponding expression. Type Type Value constant.Value Addressable reports whether the corresponding expression is addressable (https://golang.org/ref/spec#Address_operators). Assignable reports whether the corresponding expression is assignable to (provided a value of the right type). HasOk reports whether the corresponding expression may be used on the rhs of a comma-ok assignment. IsBuiltin reports whether the corresponding expression denotes a (possibly parenthesized) built-in function. IsNil reports whether the corresponding expression denotes the predeclared value nil. IsType reports whether the corresponding expression specifies a type. IsValue reports whether the corresponding expression is a value. Builtins are not considered values. Constant values have a non- nil Value. IsVoid reports whether the corresponding expression is a function call without results. func Eval(fset *token.FileSet, pkg *Package, pos token.Pos, expr string) (_ TypeAndValue, err error)
type TypeName (struct) A TypeName represents a name for a (defined or alias) type. Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not. Id is a wrapper for Id(obj.Pkg(), obj.Name()). IsAlias reports whether obj is an alias name for a type. Name returns the object's (package-local, unqualified) name. Parent returns the scope in which the object is declared. The result is nil for methods and struct fields. Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope. Pos returns the declaration position of the object's identifier. (*T) String() string Type returns the object's type. *T : Object *T : expvar.Var *T : fmt.Stringer func NewTypeName(pos token.Pos, pkg *Package, name string, typ Type) *TypeName func (*Named).Obj() *TypeName func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named
type Var (struct) A Variable represents a declared variable (including function parameters and results, and struct fields). Anonymous reports whether the variable is an embedded field. Same as Embedded; only present for backward-compatibility. Embedded reports whether the variable is an embedded field. Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not. Id is a wrapper for Id(obj.Pkg(), obj.Name()). IsField reports whether the variable is a struct field. Name returns the object's (package-local, unqualified) name. Parent returns the scope in which the object is declared. The result is nil for methods and struct fields. Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope. Pos returns the declaration position of the object's identifier. (*T) String() string Type returns the object's type. *T : Object *T : expvar.Var *T : fmt.Stringer func NewField(pos token.Pos, pkg *Package, name string, typ Type, embedded bool) *Var func NewParam(pos token.Pos, pkg *Package, name string, typ Type) *Var func NewVar(pos token.Pos, pkg *Package, name string, typ Type) *Var func (*Signature).Recv() *Var func (*Struct).Field(i int) *Var func (*Tuple).At(i int) *Var func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature func NewStruct(fields []*Var, tags []string) *Struct func NewTuple(x ...*Var) *Tuple func Sizes.Offsetsof(fields []*Var) []int64 func (*StdSizes).Offsetsof(fields []*Var) []int64
Exported Values
func AssertableTo(V *Interface, T Type) bool AssertableTo reports whether a value of type V can be asserted to have type T.
func AssignableTo(V, T Type) bool AssignableTo reports whether a value of type V is assignable to a variable of type T.
const Bool BasicKind = 1 predeclared types
const Byte BasicKind = 8 aliases
func CheckExpr(fset *token.FileSet, pkg *Package, pos token.Pos, expr ast.Expr, info *Info) (err error) CheckExpr type checks the expression expr as if it had appeared at position pos of package pkg. Type information about the expression is recorded in info. If pkg == nil, the Universe scope is used and the provided position pos is ignored. If pkg != nil, and pos is invalid, the package scope is used. Otherwise, pos must belong to the package. An error is returned if pos is not within the package or if the node cannot be type-checked. Note: Eval and CheckExpr should not be used instead of running Check to compute types and values, but in addition to Check, as these functions ignore the context in which an expression is used (e.g., an assignment). Thus, top-level untyped constants will return an untyped type rather then the respective context-specific type.
func Comparable(T Type) bool Comparable reports whether values of type T are comparable.
const Complex128 BasicKind = 16
const Complex64 BasicKind = 15
func ConvertibleTo(V, T Type) bool ConvertibleTo reports whether a value of type V is convertible to a value of type T.
func Default(typ Type) Type Default returns the default "typed" type for an "untyped" type; it returns the incoming type for all other types. The default type for untyped nil is untyped nil.
func DefPredeclaredTestFuncs() DefPredeclaredTestFuncs defines the assert and trace built-ins. These built-ins are intended for debugging and testing of this package only.
func Eval(fset *token.FileSet, pkg *Package, pos token.Pos, expr string) (_ TypeAndValue, err error) Eval returns the type and, if constant, the value for the expression expr, evaluated at position pos of package pkg, which must have been derived from type-checking an AST with complete position information relative to the provided file set. The meaning of the parameters fset, pkg, and pos is the same as in CheckExpr. An error is returned if expr cannot be parsed successfully, or the resulting expr AST cannot be type-checked.
func ExprString(x ast.Expr) string ExprString returns the (possibly shortened) string representation for x. Shortened representations are suitable for user interfaces but may not necessarily follow Go syntax.
const FieldVal SelectionKind = 0 // x.f is a struct field selector
const Float32 BasicKind = 13
const Float64 BasicKind = 14
func Id(pkg *Package, name string) string Id returns name if it is exported, otherwise it returns the name qualified with the package path.
func Identical(x, y Type) bool Identical reports whether x and y are identical types. Receivers of Signature types are ignored.
func IdenticalIgnoreTags(x, y Type) bool IdenticalIgnoreTags reports whether x and y are identical types if tags are ignored. Receivers of Signature types are ignored.
func Implements(V Type, T *Interface) bool Implements reports whether type V implements interface T.
const Int BasicKind = 2
const Int16 BasicKind = 4
const Int32 BasicKind = 5
const Int64 BasicKind = 6
const Int8 BasicKind = 3
const Invalid BasicKind = 0 // type is invalid
const IsBoolean BasicInfo = 1 Properties of basic types.
const IsComplex BasicInfo = 16 Properties of basic types.
const IsConstType BasicInfo = 59 Properties of basic types.
const IsFloat BasicInfo = 8 Properties of basic types.
const IsInteger BasicInfo = 2 Properties of basic types.
func IsInterface(typ Type) bool IsInterface reports whether typ is an interface type.
const IsNumeric BasicInfo = 26 Properties of basic types.
const IsOrdered BasicInfo = 42 Properties of basic types.
const IsString BasicInfo = 32 Properties of basic types.
const IsUnsigned BasicInfo = 4 Properties of basic types.
const IsUntyped BasicInfo = 64 Properties of basic types.
func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) LookupFieldOrMethod looks up a field or method with given package and name in T and returns the corresponding *Var or *Func, an index sequence, and a bool indicating if there were any pointer indirections on the path to the field or method. If addressable is set, T is the type of an addressable variable (only matters for method lookups). The last index entry is the field or method index in the (possibly embedded) type where the entry was found, either: 1) the list of declared methods of a named type; or 2) the list of all methods (method set) of an interface type; or 3) the list of fields of a struct type. The earlier index entries are the indices of the embedded struct fields traversed to get to the found entry, starting at depth 0. If no entry is found, a nil object is returned. In this case, the returned index and indirect values have the following meaning: - If index != nil, the index sequence points to an ambiguous entry (the same name appeared more than once at the same embedding level). - If indirect is set, a method with a pointer receiver type was found but there was no pointer on the path from the actual receiver type to the method's formal receiver base type, nor was the receiver addressable.
const MethodExpr SelectionKind = 2 // x.f is a method expression
const MethodVal SelectionKind = 1 // x.f is a method selector
func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) MissingMethod returns (nil, false) if V implements T, otherwise it returns a missing method required by T and whether it is missing or just has the wrong type. For non-interface types V, or if static is set, V implements T if all methods of T are present in V. Otherwise (V is an interface and static is not set), MissingMethod only checks that methods of T which are also present in V have matching types (e.g., for a type assertion x.(T) where x is of interface type V).
func NewArray(elem Type, len int64) *Array NewArray returns a new array type for the given element type and length. A negative length indicates an unknown length.
func NewChan(dir ChanDir, elem Type) *Chan NewChan returns a new channel type for the given direction and element type.
func NewChecker(conf *Config, fset *token.FileSet, pkg *Package, info *Info) *Checker NewChecker returns a new Checker instance for a given package. Package files may be added incrementally via checker.Files.
func NewConst(pos token.Pos, pkg *Package, name string, typ Type, val constant.Value) *Const NewConst returns a new constant with value val. The remaining arguments set the attributes found with all Objects.
func NewField(pos token.Pos, pkg *Package, name string, typ Type, embedded bool) *Var NewField returns a new variable representing a struct field. For embedded fields, the name is the unqualified type name / under which the field is accessible.
func NewFunc(pos token.Pos, pkg *Package, name string, sig *Signature) *Func NewFunc returns a new function with the given signature, representing the function's type.
func NewInterface(methods []*Func, embeddeds []*Named) *Interface NewInterface returns a new (incomplete) interface for the given methods and embedded types. Each embedded type must have an underlying type of interface type. NewInterface takes ownership of the provided methods and may modify their types by setting missing receivers. To compute the method set of the interface, Complete must be called. Deprecated: Use NewInterfaceType instead which allows any (even non-defined) interface types to be embedded. This is necessary for interfaces that embed alias type names referring to non-defined (literal) interface types.
func NewInterfaceType(methods []*Func, embeddeds []Type) *Interface NewInterfaceType returns a new (incomplete) interface for the given methods and embedded types. Each embedded type must have an underlying type of interface type (this property is not verified for defined types, which may be in the process of being set up and which don't have a valid underlying type yet). NewInterfaceType takes ownership of the provided methods and may modify their types by setting missing receivers. To compute the method set of the interface, Complete must be called.
func NewLabel(pos token.Pos, pkg *Package, name string) *Label NewLabel returns a new label.
func NewMap(key, elem Type) *Map NewMap returns a new map for the given key and element types.
func NewMethodSet(T Type) *MethodSet NewMethodSet returns the method set for the given type T. It always returns a non-nil method set, even if it is empty.
func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named NewNamed returns a new named type for the given type name, underlying type, and associated methods. If the given type name obj doesn't have a type yet, its type is set to the returned named type. The underlying type must not be a *Named.
func NewPackage(path, name string) *Package NewPackage returns a new Package for the given package path and name. The package is not complete and contains no explicit imports.
func NewParam(pos token.Pos, pkg *Package, name string, typ Type) *Var NewParam returns a new variable representing a function parameter.
func NewPkgName(pos token.Pos, pkg *Package, name string, imported *Package) *PkgName NewPkgName returns a new PkgName object representing an imported package. The remaining arguments set the attributes found with all Objects.
func NewPointer(elem Type) *Pointer NewPointer returns a new pointer type for the given element (base) type.
func NewScope(parent *Scope, pos, end token.Pos, comment string) *Scope NewScope returns a new, empty scope contained in the given parent scope, if any. The comment is for debugging only.
func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature NewSignature returns a new function type for the given receiver, parameters, and results, either of which may be nil. If variadic is set, the function is variadic, it must have at least one parameter, and the last parameter must be of unnamed slice type.
func NewSlice(elem Type) *Slice NewSlice returns a new slice type for the given element type.
func NewStruct(fields []*Var, tags []string) *Struct NewStruct returns a new struct with the given fields and corresponding field tags. If a field with index i has a tag, tags[i] must be that tag, but len(tags) may be only as long as required to hold the tag with the largest index i. Consequently, if no field has a tag, tags may be nil.
func NewTuple(x ...*Var) *Tuple NewTuple returns a new tuple for the given variables.
func NewTypeName(pos token.Pos, pkg *Package, name string, typ Type) *TypeName NewTypeName returns a new type name denoting the given typ. The remaining arguments set the attributes found with all Objects. The typ argument may be a defined (Named) type or an alias type. It may also be nil such that the returned TypeName can be used as argument for NewNamed, which will set the TypeName's type as a side- effect.
func NewVar(pos token.Pos, pkg *Package, name string, typ Type) *Var NewVar returns a new variable. The arguments set the attributes found with all Objects.
func ObjectString(obj Object, qf Qualifier) string ObjectString returns the string form of obj. The Qualifier controls the printing of package-level objects, and may be nil.
const RecvOnly ChanDir = 2 The direction of a channel is indicated by one of these constants.
func RelativeTo(pkg *Package) Qualifier RelativeTo returns a Qualifier that fully qualifies members of all packages other than pkg.
const Rune BasicKind = 5
func SelectionString(s *Selection, qf Qualifier) string SelectionString returns the string form of s. The Qualifier controls the printing of package-level objects, and may be nil. Examples: "field (T) f int" "method (T) f(X) Y" "method expr (T) f(X) Y"
const SendOnly ChanDir = 1 The direction of a channel is indicated by one of these constants.
const SendRecv ChanDir = 0 The direction of a channel is indicated by one of these constants.
func SizesFor(compiler, arch string) Sizes SizesFor returns the Sizes used by a compiler for an architecture. The result is nil if a compiler/architecture pair is not known. Supported architectures for compiler "gc": "386", "arm", "arm64", "amd64", "amd64p32", "mips", "mipsle", "mips64", "mips64le", "ppc64", "ppc64le", "riscv64", "s390x", "sparc64", "wasm".
const String BasicKind = 17
var Typ []*Basic Typ contains the predeclared *Basic types indexed by their corresponding BasicKind. The *Basic type for Typ[Byte] will have the name "uint8". Use Universe.Lookup("byte").Type() to obtain the specific alias basic type named "byte" (and analogous for "rune").
func TypeString(typ Type, qf Qualifier) string TypeString returns the string representation of typ. The Qualifier controls the printing of package-level objects, and may be nil.
const Uint BasicKind = 7
const Uint16 BasicKind = 9
const Uint32 BasicKind = 10
const Uint64 BasicKind = 11
const Uint8 BasicKind = 8
const Uintptr BasicKind = 12
var Universe *Scope The Universe scope contains all predeclared objects of Go. It is the outermost scope of any chain of nested scopes.
var Unsafe *Package The Unsafe package is the package returned by an importer for the import path "unsafe".
const UntypedBool BasicKind = 19 types for untyped values
const UntypedInt BasicKind = 20
const UntypedNil BasicKind = 25
func WriteExpr(buf *bytes.Buffer, x ast.Expr) WriteExpr writes the (possibly shortened) string representation for x to buf. Shortened representations are suitable for user interfaces but may not necessarily follow Go syntax.
func WriteSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier) WriteSignature writes the representation of the signature sig to buf, without a leading "func" keyword. The Qualifier controls the printing of package-level objects, and may be nil.
func WriteType(buf *bytes.Buffer, typ Type, qf Qualifier) WriteType writes the string representation of typ to buf. The Qualifier controls the printing of package-level objects, and may be nil.