Source File
infer.go
Belonging Package
go/types
// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
// Source: ../../cmd/compile/internal/types2/infer.go
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type parameter inference.
package types
import (
)
// If enableReverseTypeInference is set, uninstantiated and
// partially instantiated generic functions may be assigned
// (incl. returned) to variables of function type and type
// inference will attempt to infer the missing type arguments.
// Available with go1.21.
const enableReverseTypeInference = true // disable for debugging
// infer attempts to infer the complete set of type arguments for generic function instantiation/call
// based on the given type parameters tparams, type arguments targs, function parameters params, and
// function arguments args, if any. There must be at least one type parameter, no more type arguments
// than type parameters, and params and args must match in number (incl. zero).
// If reverse is set, an error message's contents are reversed for a better error message for some
// errors related to reverse type inference (where the function call is synthetic).
// If successful, infer returns the complete list of given and inferred type arguments, one for each
// type parameter. Otherwise the result is nil. Errors are reported through the err parameter.
// Note: infer may fail (return nil) due to invalid args operands without reporting additional errors.
func ( *Checker) ( positioner, []*TypeParam, []Type, *Tuple, []*operand, bool, *error_) ( []Type) {
// Don't verify result conditions if there's no error handler installed:
// in that case, an error leads to an exit panic and the result value may
// be incorrect. But in that case it doesn't matter because callers won't
// be able to use it either.
if .conf.Error != nil {
defer func() {
assert( == nil || len() == len() && !slices.Contains(, nil))
}()
}
if traceInference {
.dump("== infer : %s%s ➞ %s", , , ) // aligned with rename print below
defer func() {
.dump("=> %s ➞ %s\n", , )
}()
}
// There must be at least one type parameter, and no more type arguments than type parameters.
:= len()
assert( > 0 && len() <= )
// Parameters and arguments must match in number.
assert(.Len() == len())
// If we already have all type arguments, we're done.
if len() == && !slices.Contains(, nil) {
return
}
// If we have invalid (ordinary) arguments, an error was reported before.
// Avoid additional inference errors and exit early (go.dev/issue/60434).
for , := range {
if .mode == invalid {
return nil
}
}
// Make sure we have a "full" list of type arguments, some of which may
// be nil (unknown). Make a copy so as to not clobber the incoming slice.
if len() < {
:= make([]Type, )
copy(, )
=
}
// len(targs) == n
// Continue with the type arguments we have. Avoid matching generic
// parameters that already have type arguments against function arguments:
// It may fail because matching uses type identity while parameter passing
// uses assignment rules. Instantiate the parameter list with the type
// arguments we have, and continue with that parameter list.
// Substitute type arguments for their respective type parameters in params,
// if any. Note that nil targs entries are ignored by check.subst.
// We do this for better error messages; it's not needed for correctness.
// For instance, given:
//
// func f[P, Q any](P, Q) {}
//
// func _(s string) {
// f[int](s, s) // ERROR
// }
//
// With substitution, we get the error:
// "cannot use s (variable of type string) as int value in argument to f[int]"
//
// Without substitution we get the (worse) error:
// "type string of s does not match inferred type int for P"
// even though the type int was provided (not inferred) for P.
//
// TODO(gri) We might be able to finesse this in the error message reporting
// (which only happens in case of an error) and then avoid doing
// the substitution (which always happens).
if .Len() > 0 {
:= makeSubstMap(, )
= .subst(nopos, , , nil, .context()).(*Tuple)
}
// Unify parameter and argument types for generic parameters with typed arguments
// and collect the indices of generic parameters with untyped arguments.
// Terminology: generic parameter = function parameter with a type-parameterized type
:= newUnifier(, , .allowVersion(go1_21))
:= func(, Type, *operand) {
// provide a better error message if we can
:= .inferred()
if [0] == nil {
// The first type parameter couldn't be inferred.
// If none of them could be inferred, don't try
// to provide the inferred type in the error msg.
:= true
for , := range {
if != nil {
= false
break
}
}
if {
.addf(, "type %s of %s does not match %s (cannot infer %s)", , .expr, , typeParamsString())
return
}
}
:= makeSubstMap(, )
// TODO(gri): pass a poser here, rather than arg.Pos().
:= .subst(.Pos(), , , nil, .context())
// CannotInferTypeArgs indicates a failure of inference, though the actual
// error may be better attributed to a user-provided type argument (hence
// InvalidTypeArg). We can't differentiate these cases, so fall back on
// the more general CannotInferTypeArgs.
if != {
if {
.addf(, "inferred type %s for %s does not match type %s of %s", , , , .expr)
} else {
.addf(, "type %s of %s does not match inferred type %s for %s", , .expr, , )
}
} else {
.addf(, "type %s of %s does not match %s", , .expr, )
}
}
// indices of generic parameters with untyped arguments, for later use
var []int
// --- 1 ---
// use information from function arguments
if traceInference {
.tracef("== function parameters: %s", )
.tracef("-- function arguments : %s", )
}
for , := range {
if .mode == invalid {
// An error was reported earlier. Ignore this arg
// and continue, we may still be able to infer all
// targs resulting in fewer follow-on errors.
// TODO(gri) determine if we still need this check
continue
}
:= .At()
if isParameterized(, .typ) || isParameterized(, .typ) {
// Function parameters are always typed. Arguments may be untyped.
// Collect the indices of untyped arguments and handle them later.
if isTyped(.typ) {
if !.unify(.typ, .typ, assign) {
(.typ, .typ, )
return nil
}
} else if , := .typ.(*TypeParam); && !.isNil() {
// Since default types are all basic (i.e., non-composite) types, an
// untyped argument will never match a composite parameter type; the
// only parameter type it can possibly match against is a *TypeParam.
// Thus, for untyped arguments we only need to look at parameter types
// that are single type parameters.
// Also, untyped nils don't have a default type and can be ignored.
// Finally, it's not possible to have an alias type denoting a type
// parameter declared by the current function and use it in the same
// function signature; hence we don't need to Unalias before the
// .(*TypeParam) type assertion above.
= append(, )
}
}
}
if traceInference {
:= .inferred()
.tracef("=> %s ➞ %s\n", , )
}
// --- 2 ---
// use information from type parameter constraints
if traceInference {
.tracef("== type parameters: %s", )
}
// Unify type parameters with their constraints as long
// as progress is being made.
//
// This is an O(n^2) algorithm where n is the number of
// type parameters: if there is progress, at least one
// type argument is inferred per iteration, and we have
// a doubly nested loop.
//
// In practice this is not a problem because the number
// of type parameters tends to be very small (< 5 or so).
// (It should be possible for unification to efficiently
// signal newly inferred type arguments; then the loops
// here could handle the respective type parameters only,
// but that will come at a cost of extra complexity which
// may not be worth it.)
for := 0; ; ++ {
:= .unknowns()
if traceInference {
if > 0 {
fmt.Println()
}
.tracef("-- iteration %d", )
}
for , := range {
:= .at()
, := coreTerm()
if traceInference {
.tracef("-- type parameter %s = %s: core(%s) = %s, single = %v", , , , , )
}
// If the type parameter's constraint has a core term (i.e., a core type with tilde information)
// try to unify the type parameter with that core type.
if != nil {
// A type parameter can be unified with its constraint's core type in two cases.
switch {
case != nil:
if traceInference {
.tracef("-> unify type parameter %s (type %s) with constraint core type %s", , , .typ)
}
// The corresponding type argument tx is known. There are 2 cases:
// 1) If the core type has a tilde, per spec requirement for tilde
// elements, the core type is an underlying (literal) type.
// And because of the tilde, the underlying type of tx must match
// against the core type.
// But because unify automatically matches a defined type against
// an underlying literal type, we can simply unify tx with the
// core type.
// 2) If the core type doesn't have a tilde, we also must unify tx
// with the core type.
if !.unify(, .typ, 0) {
// TODO(gri) Type parameters that appear in the constraint and
// for which we have type arguments inferred should
// use those type arguments for a better error message.
.addf(, "%s (type %s) does not satisfy %s", , , .Constraint())
return nil
}
case && !.tilde:
if traceInference {
.tracef("-> set type parameter %s to constraint core type %s", , .typ)
}
// The corresponding type argument tx is unknown and the core term
// describes a single specific type and no tilde.
// In this case the type argument must be that single type; set it.
.set(, .typ)
}
}
// Independent of whether there is a core term, if the type argument tx is known
// it must implement the methods of the type constraint, possibly after unification
// of the relevant method signatures, otherwise tx cannot satisfy the constraint.
// This unification step may provide additional type arguments.
//
// Note: The type argument tx may be known but contain references to other type
// parameters (i.e., tx may still be parameterized).
// In this case the methods of tx don't correctly reflect the final method set
// and we may get a missing method error below. Skip this step in this case.
//
// TODO(gri) We should be able continue even with a parameterized tx if we add
// a simplify step beforehand (see below). This will require factoring out the
// simplify phase so we can call it from here.
if != nil && !isParameterized(, ) {
if traceInference {
.tracef("-> unify type parameter %s (type %s) methods with constraint methods", , )
}
// TODO(gri) Now that unification handles interfaces, this code can
// be reduced to calling u.unify(tx, tpar.iface(), assign)
// (which will compare signatures exactly as we do below).
// We leave it as is for now because missingMethod provides
// a failure cause which allows for a better error message.
// Eventually, unify should return an error with cause.
var string
:= .iface()
if !.hasAllMethods(, , true, func(, Type) bool { return .unify(, , exact) }, &) {
// TODO(gri) better error message (see TODO above)
.addf(, "%s (type %s) does not satisfy %s %s", , , .Constraint(), )
return nil
}
}
}
if .unknowns() == {
break // no progress
}
}
if traceInference {
:= .inferred()
.tracef("=> %s ➞ %s\n", , )
}
// --- 3 ---
// use information from untyped constants
if traceInference {
.tracef("== untyped arguments: %v", )
}
// Some generic parameters with untyped arguments may have been given a type by now.
// Collect all remaining parameters that don't have a type yet and determine the
// maximum untyped type for each of those parameters, if possible.
var map[*TypeParam]Type // lazily allocated (we may not need it)
for , := range {
:= .At().typ.(*TypeParam) // is type parameter (no alias) by construction of untyped
if .at() == nil {
:= [] // arg corresponding to tpar
if == nil {
= make(map[*TypeParam]Type)
}
:= []
if == nil {
= .typ
} else {
:= maxType(, .typ)
if == nil {
.addf(, "mismatched types %s and %s (cannot infer %s)", , .typ, )
return nil
}
=
}
[] =
}
}
// maxUntyped contains the maximum untyped type for each type parameter
// which doesn't have a type yet. Set the respective default types.
for , := range {
:= Default()
assert(isTyped())
.set(, )
}
// --- simplify ---
// u.inferred(tparams) now contains the incoming type arguments plus any additional type
// arguments which were inferred. The inferred non-nil entries may still contain
// references to other type parameters found in constraints.
// For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int
// was given, unification produced the type list [int, []C, *A]. We eliminate the
// remaining type parameters by substituting the type parameters in this type list
// until nothing changes anymore.
= .inferred()
if debug {
for , := range {
assert( == nil || [] == )
}
}
// The data structure of each (provided or inferred) type represents a graph, where
// each node corresponds to a type and each (directed) vertex points to a component
// type. The substitution process described above repeatedly replaces type parameter
// nodes in these graphs with the graphs of the types the type parameters stand for,
// which creates a new (possibly bigger) graph for each type.
// The substitution process will not stop if the replacement graph for a type parameter
// also contains that type parameter.
// For instance, for [A interface{ *A }], without any type argument provided for A,
// unification produces the type list [*A]. Substituting A in *A with the value for
// A will lead to infinite expansion by producing [**A], [****A], [********A], etc.,
// because the graph A -> *A has a cycle through A.
// Generally, cycles may occur across multiple type parameters and inferred types
// (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]).
// We eliminate cycles by walking the graphs for all type parameters. If a cycle
// through a type parameter is detected, killCycles nils out the respective type
// (in the inferred list) which kills the cycle, and marks the corresponding type
// parameter as not inferred.
//
// TODO(gri) If useful, we could report the respective cycle as an error. We don't
// do this now because type inference will fail anyway, and furthermore,
// constraints with cycles of this kind cannot currently be satisfied by
// any user-supplied type. But should that change, reporting an error
// would be wrong.
killCycles(, )
// dirty tracks the indices of all types that may still contain type parameters.
// We know that nil type entries and entries corresponding to provided (non-nil)
// type arguments are clean, so exclude them from the start.
var []int
for , := range {
if != nil && ( >= len() || [] == nil) {
= append(, )
}
}
for len() > 0 {
if traceInference {
.tracef("-- simplify %s ➞ %s", , )
}
// TODO(gri) Instead of creating a new substMap for each iteration,
// provide an update operation for substMaps and only change when
// needed. Optimization.
:= makeSubstMap(, )
:= 0
for , := range {
:= []
if := .subst(nopos, , , nil, .context()); != {
// t0 was simplified to t1.
// If t0 was a generic function, but the simplified signature t1 does
// not contain any type parameters anymore, the function is not generic
// anymore. Remove its type parameters. (go.dev/issue/59953)
// Note that if t0 was a signature, t1 must be a signature, and t1
// can only be a generic signature if it originated from a generic
// function argument. Those signatures are never defined types and
// thus there is no need to call under below.
// TODO(gri) Consider doing this in Checker.subst.
// Then this would fall out automatically here and also
// in instantiation (where we also explicitly nil out
// type parameters). See the *Signature TODO in subst.
if , := .(*Signature); != nil && .TypeParams().Len() > 0 && !isParameterized(, ) {
.tparams = nil
}
[] =
[] =
++
}
}
= [:]
}
// Once nothing changes anymore, we may still have type parameters left;
// e.g., a constraint with core type *P may match a type parameter Q but
// we don't have any type arguments to fill in for *P or Q (go.dev/issue/45548).
// Don't let such inferences escape; instead treat them as unresolved.
for , := range {
if == nil || isParameterized(, ) {
:= [].obj
.addf(, "cannot infer %s (declared at %v)", .name, .pos)
return nil
}
}
return
}
// renameTParams renames the type parameters in the given type such that each type
// parameter is given a new identity. renameTParams returns the new type parameters
// and updated type. If the result type is unchanged from the argument type, none
// of the type parameters in tparams occurred in the type.
// If typ is a generic function, type parameters held with typ are not changed and
// must be updated separately if desired.
// The positions is only used for debug traces.
func ( *Checker) ( token.Pos, []*TypeParam, Type) ([]*TypeParam, Type) {
// For the purpose of type inference we must differentiate type parameters
// occurring in explicit type or value function arguments from the type
// parameters we are solving for via unification because they may be the
// same in self-recursive calls:
//
// func f[P constraint](x P) {
// f(x)
// }
//
// In this example, without type parameter renaming, the P used in the
// instantiation f[P] has the same pointer identity as the P we are trying
// to solve for through type inference. This causes problems for type
// unification. Because any such self-recursive call is equivalent to
// a mutually recursive call, type parameter renaming can be used to
// create separate, disentangled type parameters. The above example
// can be rewritten into the following equivalent code:
//
// func f[P constraint](x P) {
// f2(x)
// }
//
// func f2[P2 constraint](x P2) {
// f(x)
// }
//
// Type parameter renaming turns the first example into the second
// example by renaming the type parameter P into P2.
if len() == 0 {
return nil, // nothing to do
}
:= make([]*TypeParam, len())
for , := range {
:= NewTypeName(.Obj().Pos(), .Obj().Pkg(), .Obj().Name(), nil)
[] = NewTypeParam(, nil)
[].index = .index // == i
}
:= makeRenameMap(, )
for , := range {
[].bound = .subst(, .bound, , nil, .context())
}
return , .subst(, , , nil, .context())
}
// typeParamsString produces a string containing all the type parameter names
// in list suitable for human consumption.
func typeParamsString( []*TypeParam) string {
// common cases
:= len()
switch {
case 0:
return ""
case 1:
return [0].obj.name
case 2:
return [0].obj.name + " and " + [1].obj.name
}
// general case (n > 2)
var strings.Builder
for , := range [:-1] {
if > 0 {
.WriteString(", ")
}
.WriteString(.obj.name)
}
.WriteString(", and ")
.WriteString([-1].obj.name)
return .String()
}
// isParameterized reports whether typ contains any of the type parameters of tparams.
// If typ is a generic function, isParameterized ignores the type parameter declarations;
// it only considers the signature proper (incoming and result parameters).
func isParameterized( []*TypeParam, Type) bool {
:= tpWalker{
tparams: ,
seen: make(map[Type]bool),
}
return .isParameterized()
}
type tpWalker struct {
tparams []*TypeParam
seen map[Type]bool
}
func ( *tpWalker) ( Type) ( bool) {
// detect cycles
if , := .seen[]; {
return
}
.seen[] = false
defer func() {
.seen[] =
}()
switch t := .(type) {
case *Basic:
// nothing to do
case *Alias:
return .(Unalias())
case *Array:
return .(.elem)
case *Slice:
return .(.elem)
case *Struct:
return .varList(.fields)
case *Pointer:
return .(.base)
case *Tuple:
// This case does not occur from within isParameterized
// because tuples only appear in signatures where they
// are handled explicitly. But isParameterized is also
// called by Checker.callExpr with a function result tuple
// if instantiation failed (go.dev/issue/59890).
return != nil && .varList(.vars)
case *Signature:
// t.tparams may not be nil if we are looking at a signature
// of a generic function type (or an interface method) that is
// part of the type we're testing. We don't care about these type
// parameters.
// Similarly, the receiver of a method may declare (rather than
// use) type parameters, we don't care about those either.
// Thus, we only need to look at the input and result parameters.
return .params != nil && .varList(.params.vars) || .results != nil && .varList(.results.vars)
case *Interface:
:= .typeSet()
for , := range .methods {
if .(.typ) {
return true
}
}
return .is(func( *term) bool {
return != nil && .(.typ)
})
case *Map:
return .(.key) || .(.elem)
case *Chan:
return .(.elem)
case *Named:
for , := range .TypeArgs().list() {
if .() {
return true
}
}
case *TypeParam:
return slices.Index(.tparams, ) >= 0
default:
panic(fmt.Sprintf("unexpected %T", ))
}
return false
}
func ( *tpWalker) ( []*Var) bool {
for , := range {
if .isParameterized(.typ) {
return true
}
}
return false
}
// If the type parameter has a single specific type S, coreTerm returns (S, true).
// Otherwise, if tpar has a core type T, it returns a term corresponding to that
// core type and false. In that case, if any term of tpar has a tilde, the core
// term has a tilde. In all other cases coreTerm returns (nil, false).
func coreTerm( *TypeParam) (*term, bool) {
:= 0
var *term // valid if n == 1
var bool
.is(func( *term) bool {
if == nil {
assert( == 0)
return false // no terms
}
++
=
if .tilde {
= true
}
return true
})
if == 1 {
if debug {
assert(debug && under(.typ) == coreType())
}
return , true
}
if := coreType(); != nil {
// A core type is always an underlying type.
// If any term of tpar has a tilde, we don't
// have a precise core type and we must return
// a tilde as well.
return &term{, }, false
}
return nil, false
}
// killCycles walks through the given type parameters and looks for cycles
// created by type parameters whose inferred types refer back to that type
// parameter, either directly or indirectly. If such a cycle is detected,
// it is killed by setting the corresponding inferred type to nil.
//
// TODO(gri) Determine if we can simply abort inference as soon as we have
// found a single cycle.
func killCycles( []*TypeParam, []Type) {
:= cycleFinder{, , make(map[Type]bool)}
for , := range {
.typ() // t != nil
}
}
type cycleFinder struct {
tparams []*TypeParam
inferred []Type
seen map[Type]bool
}
func ( *cycleFinder) ( Type) {
= Unalias()
if .seen[] {
// We have seen typ before. If it is one of the type parameters
// in w.tparams, iterative substitution will lead to infinite expansion.
// Nil out the corresponding type which effectively kills the cycle.
if , := .(*TypeParam); != nil {
if := slices.Index(.tparams, ); >= 0 {
// cycle through tpar
.inferred[] = nil
}
}
// If we don't have one of our type parameters, the cycle is due
// to an ordinary recursive type and we can just stop walking it.
return
}
.seen[] = true
defer delete(.seen, )
switch t := .(type) {
case *Basic:
// nothing to do
// *Alias:
// This case should not occur because of Unalias(typ) at the top.
case *Array:
.(.elem)
case *Slice:
.(.elem)
case *Struct:
.varList(.fields)
case *Pointer:
.(.base)
// case *Tuple:
// This case should not occur because tuples only appear
// in signatures where they are handled explicitly.
case *Signature:
if .params != nil {
.varList(.params.vars)
}
if .results != nil {
.varList(.results.vars)
}
case *Union:
for , := range .terms {
.(.typ)
}
case *Interface:
for , := range .methods {
.(.typ)
}
for , := range .embeddeds {
.()
}
case *Map:
.(.key)
.(.elem)
case *Chan:
.(.elem)
case *Named:
for , := range .TypeArgs().list() {
.()
}
case *TypeParam:
if := slices.Index(.tparams, ); >= 0 && .inferred[] != nil {
.(.inferred[])
}
default:
panic(fmt.Sprintf("unexpected %T", ))
}
}
func ( *cycleFinder) ( []*Var) {
for , := range {
.typ(.typ)
}
}
The pages are generated with Golds v0.7.3. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |