Source File
unify.go
Belonging Package
go/types
// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
// Source: ../../cmd/compile/internal/types2/unify.go
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type unification.
//
// Type unification attempts to make two types x and y structurally
// equivalent by determining the types for a given list of (bound)
// type parameters which may occur within x and y. If x and y are
// structurally different (say []T vs chan T), or conflicting
// types are determined for type parameters, unification fails.
// If unification succeeds, as a side-effect, the types of the
// bound type parameters may be determined.
//
// Unification typically requires multiple calls u.unify(x, y) to
// a given unifier u, with various combinations of types x and y.
// In each call, additional type parameter types may be determined
// as a side effect and recorded in u.
// If a call fails (returns false), unification fails.
//
// In the unification context, structural equivalence of two types
// ignores the difference between a defined type and its underlying
// type if one type is a defined type and the other one is not.
// It also ignores the difference between an (external, unbound)
// type parameter and its core type.
// If two types are not structurally equivalent, they cannot be Go
// identical types. On the other hand, if they are structurally
// equivalent, they may be Go identical or at least assignable, or
// they may be in the type set of a constraint.
// Whether they indeed are identical or assignable is determined
// upon instantiation and function argument passing.
package types
import (
)
const (
// Upper limit for recursion depth. Used to catch infinite recursions
// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
unificationDepthLimit = 50
// Whether to panic when unificationDepthLimit is reached.
// If disabled, a recursion depth overflow results in a (quiet)
// unification failure.
panicAtUnificationDepthLimit = true
// If enableCoreTypeUnification is set, unification will consider
// the core types, if any, of non-local (unbound) type parameters.
enableCoreTypeUnification = true
// If traceInference is set, unification will print a trace of its operation.
// Interpretation of trace:
// x ≡ y attempt to unify types x and y
// p ➞ y type parameter p is set to type y (p is inferred to be y)
// p ⇄ q type parameters p and q match (p is inferred to be q and vice versa)
// x ≢ y types x and y cannot be unified
// [p, q, ...] ➞ [x, y, ...] mapping from type parameters to types
traceInference = false
)
// A unifier maintains a list of type parameters and
// corresponding types inferred for each type parameter.
// A unifier is created by calling newUnifier.
type unifier struct {
// handles maps each type parameter to its inferred type through
// an indirection *Type called (inferred type) "handle".
// Initially, each type parameter has its own, separate handle,
// with a nil (i.e., not yet inferred) type.
// After a type parameter P is unified with a type parameter Q,
// P and Q share the same handle (and thus type). This ensures
// that inferring the type for a given type parameter P will
// automatically infer the same type for all other parameters
// unified (joined) with P.
handles map[*TypeParam]*Type
depth int // recursion depth during unification
enableInterfaceInference bool // use shared methods for better inference
}
// newUnifier returns a new unifier initialized with the given type parameter
// and corresponding type argument lists. The type argument list may be shorter
// than the type parameter list, and it may contain nil types. Matching type
// parameters and arguments must have the same index.
func newUnifier( []*TypeParam, []Type, bool) *unifier {
assert(len() >= len())
:= make(map[*TypeParam]*Type, len())
// Allocate all handles up-front: in a correct program, all type parameters
// must be resolved and thus eventually will get a handle.
// Also, sharing of handles caused by unified type parameters is rare and
// so it's ok to not optimize for that case (and delay handle allocation).
for , := range {
var Type
if < len() {
= []
}
[] = &
}
return &unifier{, 0, }
}
// unifyMode controls the behavior of the unifier.
type unifyMode uint
const (
// If assign is set, we are unifying types involved in an assignment:
// they may match inexactly at the top, but element types must match
// exactly.
assign unifyMode = 1 << iota
// If exact is set, types unify if they are identical (or can be
// made identical with suitable arguments for type parameters).
// Otherwise, a named type and a type literal unify if their
// underlying types unify, channel directions are ignored, and
// if there is an interface, the other type must implement the
// interface.
exact
)
func ( unifyMode) () string {
switch {
case 0:
return "inexact"
case assign:
return "assign"
case exact:
return "exact"
case assign | exact:
return "assign, exact"
}
return fmt.Sprintf("mode %d", )
}
// unify attempts to unify x and y and reports whether it succeeded.
// As a side-effect, types may be inferred for type parameters.
// The mode parameter controls how types are compared.
func ( *unifier) (, Type, unifyMode) bool {
return .nify(, , , nil)
}
func ( *unifier) ( string, ...interface{}) {
fmt.Println(strings.Repeat(". ", .depth) + sprintf(nil, nil, true, , ...))
}
// String returns a string representation of the current mapping
// from type parameters to types.
func ( *unifier) () string {
// sort type parameters for reproducible strings
:= make(typeParamsById, len(.handles))
:= 0
for := range .handles {
[] =
++
}
sort.Sort()
var bytes.Buffer
:= newTypeWriter(&, nil)
.byte('[')
for , := range {
if > 0 {
.string(", ")
}
.typ()
.string(": ")
.typ(.at())
}
.byte(']')
return .String()
}
type typeParamsById []*TypeParam
func ( typeParamsById) () int { return len() }
func ( typeParamsById) (, int) bool { return [].id < [].id }
func ( typeParamsById) (, int) { [], [] = [], [] }
// join unifies the given type parameters x and y.
// If both type parameters already have a type associated with them
// and they are not joined, join fails and returns false.
func ( *unifier) (, *TypeParam) bool {
if traceInference {
.tracef("%s ⇄ %s", , )
}
switch , := .handles[], .handles[]; {
case == :
// Both type parameters already share the same handle. Nothing to do.
case * != nil && * != nil:
// Both type parameters have (possibly different) inferred types. Cannot join.
return false
case * != nil:
// Only type parameter x has an inferred type. Use handle of x.
.setHandle(, )
// This case is treated like the default case.
// case *hy != nil:
// // Only type parameter y has an inferred type. Use handle of y.
// u.setHandle(x, hy)
default:
// Neither type parameter has an inferred type. Use handle of y.
.setHandle(, )
}
return true
}
// asBoundTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u.
// Otherwise, the result is nil.
func ( *unifier) ( Type) *TypeParam {
if , := Unalias().(*TypeParam); != nil {
if , := .handles[]; {
return
}
}
return nil
}
// setHandle sets the handle for type parameter x
// (and all its joined type parameters) to h.
func ( *unifier) ( *TypeParam, *Type) {
:= .handles[]
assert( != nil)
for , := range .handles {
if == {
.handles[] =
}
}
}
// at returns the (possibly nil) type for type parameter x.
func ( *unifier) ( *TypeParam) Type {
return *.handles[]
}
// set sets the type t for type parameter x;
// t must not be nil.
func ( *unifier) ( *TypeParam, Type) {
assert( != nil)
if traceInference {
.tracef("%s ➞ %s", , )
}
*.handles[] =
}
// unknowns returns the number of type parameters for which no type has been set yet.
func ( *unifier) () int {
:= 0
for , := range .handles {
if * == nil {
++
}
}
return
}
// inferred returns the list of inferred types for the given type parameter list.
// The result is never nil and has the same length as tparams; result types that
// could not be inferred are nil. Corresponding type parameters and result types
// have identical indices.
func ( *unifier) ( []*TypeParam) []Type {
:= make([]Type, len())
for , := range {
[] = .at()
}
return
}
// asInterface returns the underlying type of x as an interface if
// it is a non-type parameter interface. Otherwise it returns nil.
func asInterface( Type) ( *Interface) {
if , := Unalias().(*TypeParam); ! {
, _ = under().(*Interface)
}
return
}
// nify implements the core unification algorithm which is an
// adapted version of Checker.identical. For changes to that
// code the corresponding changes should be made here.
// Must not be called directly from outside the unifier.
func ( *unifier) (, Type, unifyMode, *ifacePair) ( bool) {
.depth++
if traceInference {
.tracef("%s ≡ %s\t// %s", , , )
}
defer func() {
if traceInference && ! {
.tracef("%s ≢ %s", , )
}
.depth--
}()
// nothing to do if x == y
if == || Unalias() == Unalias() {
return true
}
// Stop gap for cases where unification fails.
if .depth > unificationDepthLimit {
if traceInference {
.tracef("depth %d >= %d", .depth, unificationDepthLimit)
}
if panicAtUnificationDepthLimit {
panic("unification reached recursion depth limit")
}
return false
}
// Unification is symmetric, so we can swap the operands.
// Ensure that if we have at least one
// - defined type, make sure one is in y
// - type parameter recorded with u, make sure one is in x
if asNamed() != nil || .asBoundTypeParam() != nil {
if traceInference {
.tracef("%s ≡ %s\t// swap", , )
}
, = ,
}
// Unification will fail if we match a defined type against a type literal.
// If we are matching types in an assignment, at the top-level, types with
// the same type structure are permitted as long as at least one of them
// is not a defined type. To accommodate for that possibility, we continue
// unification with the underlying type of a defined type if the other type
// is a type literal. This is controlled by the exact unification mode.
// We also continue if the other type is a basic type because basic types
// are valid underlying types and may appear as core types of type constraints.
// If we exclude them, inferred defined types for type parameters may not
// match against the core types of their constraints (even though they might
// correctly match against some of the types in the constraint's type set).
// Finally, if unification (incorrectly) succeeds by matching the underlying
// type of a defined type against a basic type (because we include basic types
// as type literals here), and if that leads to an incorrectly inferred type,
// we will fail at function instantiation or argument assignment time.
//
// If we have at least one defined type, there is one in y.
if := asNamed(); &exact == 0 && != nil && isTypeLit() && !(.enableInterfaceInference && IsInterface()) {
if traceInference {
.tracef("%s ≡ under %s", , )
}
= .under()
// Per the spec, a defined type cannot have an underlying type
// that is a type parameter.
assert(!isTypeParam())
// x and y may be identical now
if == || Unalias() == Unalias() {
return true
}
}
// Cases where at least one of x or y is a type parameter recorded with u.
// If we have at least one type parameter, there is one in x.
// If we have exactly one type parameter, because it is in x,
// isTypeLit(x) is false and y was not changed above. In other
// words, if y was a defined type, it is still a defined type
// (relevant for the logic below).
switch , := .asBoundTypeParam(), .asBoundTypeParam(); {
case != nil && != nil:
// both x and y are type parameters
if .join(, ) {
return true
}
// both x and y have an inferred type - they must match
return .(.at(), .at(), , )
case != nil:
// x is a type parameter, y is not
if := .at(); != nil {
// x has an inferred type which must match y
if .(, , , ) {
// We have a match, possibly through underlying types.
:= asInterface()
:= asInterface()
:= asNamed() != nil
:= asNamed() != nil
// If we have two interfaces, what to do depends on
// whether they are named and their method sets.
if != nil && != nil {
// Both types are interfaces.
// If both types are defined types, they must be identical
// because unification doesn't know which type has the "right" name.
if && {
return Identical(, )
}
// In all other cases, the method sets must match.
// The types unified so we know that corresponding methods
// match and we can simply compare the number of methods.
// TODO(gri) We may be able to relax this rule and select
// the more general interface. But if one of them is a defined
// type, it's not clear how to choose and whether we introduce
// an order dependency or not. Requiring the same method set
// is conservative.
if len(.typeSet().methods) != len(.typeSet().methods) {
return false
}
} else if != nil || != nil {
// One but not both of them are interfaces.
// In this case, either x or y could be viable matches for the corresponding
// type parameter, which means choosing either introduces an order dependence.
// Therefore, we must fail unification (go.dev/issue/60933).
return false
}
// If we have inexact unification and one of x or y is a defined type, select the
// defined type. This ensures that in a series of types, all matching against the
// same type parameter, we infer a defined type if there is one, independent of
// order. Type inference or assignment may fail, which is ok.
// Selecting a defined type, if any, ensures that we don't lose the type name;
// and since we have inexact unification, a value of equally named or matching
// undefined type remains assignable (go.dev/issue/43056).
//
// Similarly, if we have inexact unification and there are no defined types but
// channel types, select a directed channel, if any. This ensures that in a series
// of unnamed types, all matching against the same type parameter, we infer the
// directed channel if there is one, independent of order.
// Selecting a directional channel, if any, ensures that a value of another
// inexactly unifying channel type remains assignable (go.dev/issue/62157).
//
// If we have multiple defined channel types, they are either identical or we
// have assignment conflicts, so we can ignore directionality in this case.
//
// If we have defined and literal channel types, a defined type wins to avoid
// order dependencies.
if &exact == 0 {
switch {
case :
// x is a defined type: nothing to do.
case :
// x is not a defined type and y is a defined type: select y.
.set(, )
default:
// Neither x nor y are defined types.
if , := under().(*Chan); != nil && .dir != SendRecv {
// y is a directed channel type: select y.
.set(, )
}
}
}
return true
}
return false
}
// otherwise, infer type from y
.set(, )
return true
}
// x != y if we get here
assert( != && Unalias() != Unalias())
// If u.EnableInterfaceInference is set and we don't require exact unification,
// if both types are interfaces, one interface must have a subset of the
// methods of the other and corresponding method signatures must unify.
// If only one type is an interface, all its methods must be present in the
// other type and corresponding method signatures must unify.
if .enableInterfaceInference && &exact == 0 {
// One or both interfaces may be defined types.
// Look under the name, but not under type parameters (go.dev/issue/60564).
:= asInterface()
:= asInterface()
// If we have two interfaces, check the type terms for equivalence,
// and unify common methods if possible.
if != nil && != nil {
:= .typeSet()
:= .typeSet()
if .comparable != .comparable {
return false
}
// For now we require terms to be equal.
// We should be able to relax this as well, eventually.
if !.terms.equal(.terms) {
return false
}
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
:= &ifacePair{, , }
for != nil {
if .identical() {
return true // same pair was compared before
}
= .prev
}
// The method set of x must be a subset of the method set
// of y or vice versa, and the common methods must unify.
:= .methods
:= .methods
// The smaller method set must be the subset, if it exists.
if len() > len() {
, = ,
}
// len(xmethods) <= len(ymethods)
// Collect the ymethods in a map for quick lookup.
:= make(map[string]*Func, len())
for , := range {
[.Id()] =
}
// All xmethods must exist in ymethods and corresponding signatures must unify.
for , := range {
if := [.Id()]; == nil || !.(.typ, .typ, exact, ) {
return false
}
}
return true
}
// We don't have two interfaces. If we have one, make sure it's in xi.
if != nil {
=
=
}
// If we have one interface, at a minimum each of the interface methods
// must be implemented and thus unify with a corresponding method from
// the non-interface type, otherwise unification fails.
if != nil {
// All xi methods must exist in y and corresponding signatures must unify.
:= .typeSet().methods
for , := range {
, , := LookupFieldOrMethod(, false, .pkg, .name)
if , := .(*Func); == nil || !.(.typ, .typ, exact, ) {
return false
}
}
return true
}
}
// Unless we have exact unification, neither x nor y are interfaces now.
// Except for unbound type parameters (see below), x and y must be structurally
// equivalent to unify.
// If we get here and x or y is a type parameter, they are unbound
// (not recorded with the unifier).
// Ensure that if we have at least one type parameter, it is in x
// (the earlier swap checks for _recorded_ type parameters only).
// This ensures that the switch switches on the type parameter.
//
// TODO(gri) Factor out type parameter handling from the switch.
if isTypeParam() {
if traceInference {
.tracef("%s ≡ %s\t// swap", , )
}
, = ,
}
// Type elements (array, slice, etc. elements) use emode for unification.
// Element types must match exactly if the types are used in an assignment.
:=
if &assign != 0 {
|= exact
}
// Continue with unaliased types but don't lose original alias names, if any (go.dev/issue/67628).
, := , Unalias()
, := , Unalias()
switch x := .(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if , := .(*Basic); {
return .kind == .kind
}
case *Array:
// Two array types unify if they have the same array length
// and their element types unify.
if , := .(*Array); {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (.len < 0 || .len < 0 || .len == .len) && .(.elem, .elem, , )
}
case *Slice:
// Two slice types unify if their element types unify.
if , := .(*Slice); {
return .(.elem, .elem, , )
}
case *Struct:
// Two struct types unify if they have the same sequence of fields,
// and if corresponding fields have the same names, their (field) types unify,
// and they have identical tags. Two embedded fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if , := .(*Struct); {
if .NumFields() == .NumFields() {
for , := range .fields {
:= .fields[]
if .embedded != .embedded ||
.Tag() != .Tag() ||
!.sameId(.pkg, .name, false) ||
!.(.typ, .typ, , ) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types unify if their base types unify.
if , := .(*Pointer); {
return .(.base, .base, , )
}
case *Tuple:
// Two tuples types unify if they have the same number of elements
// and the types of corresponding elements unify.
if , := .(*Tuple); {
if .Len() == .Len() {
if != nil {
for , := range .vars {
:= .vars[]
if !.(.typ, .typ, , ) {
return false
}
}
}
return true
}
}
case *Signature:
// Two function types unify if they have the same number of parameters
// and result values, corresponding parameter and result types unify,
// and either both functions are variadic or neither is.
// Parameter and result names are not required to match.
// TODO(gri) handle type parameters or document why we can ignore them.
if , := .(*Signature); {
return .variadic == .variadic &&
.(.params, .params, , ) &&
.(.results, .results, , )
}
case *Interface:
assert(!.enableInterfaceInference || &exact != 0) // handled before this switch
// Two interface types unify if they have the same set of methods with
// the same names, and corresponding function types unify.
// Lower-case method names from different packages are always different.
// The order of the methods is irrelevant.
if , := .(*Interface); {
:= .typeSet()
:= .typeSet()
if .comparable != .comparable {
return false
}
if !.terms.equal(.terms) {
return false
}
:= .methods
:= .methods
if len() == len() {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
:= &ifacePair{, , }
for != nil {
if .identical() {
return true // same pair was compared before
}
= .prev
}
if debug {
assertSortedMethods()
assertSortedMethods()
}
for , := range {
:= []
if .Id() != .Id() || !.(.typ, .typ, exact, ) {
return false
}
}
return true
}
}
case *Map:
// Two map types unify if their key and value types unify.
if , := .(*Map); {
return .(.key, .key, , ) && .(.elem, .elem, , )
}
case *Chan:
// Two channel types unify if their value types unify
// and if they have the same direction.
// The channel direction is ignored for inexact unification.
if , := .(*Chan); {
return (&exact == 0 || .dir == .dir) && .(.elem, .elem, , )
}
case *Named:
// Two named types unify if their type names originate in the same type declaration.
// If they are instantiated, their type argument lists must unify.
if := asNamed(); != nil {
// Check type arguments before origins so they unify
// even if the origins don't match; for better error
// messages (see go.dev/issue/53692).
:= .TypeArgs().list()
:= .TypeArgs().list()
if len() != len() {
return false
}
for , := range {
if !.(, [], , ) {
return false
}
}
return identicalOrigin(, )
}
case *TypeParam:
// x must be an unbound type parameter (see comment above).
if debug {
assert(.asBoundTypeParam() == nil)
}
// By definition, a valid type argument must be in the type set of
// the respective type constraint. Therefore, the type argument's
// underlying type must be in the set of underlying types of that
// constraint. If there is a single such underlying type, it's the
// constraint's core type. It must match the type argument's under-
// lying type, irrespective of whether the actual type argument,
// which may be a defined type, is actually in the type set (that
// will be determined at instantiation time).
// Thus, if we have the core type of an unbound type parameter,
// we know the structure of the possible types satisfying such
// parameters. Use that core type for further unification
// (see go.dev/issue/50755 for a test case).
if enableCoreTypeUnification {
// Because the core type is always an underlying type,
// unification will take care of matching against a
// defined or literal type automatically.
// If y is also an unbound type parameter, we will end
// up here again with x and y swapped, so we don't
// need to take care of that case separately.
if := coreType(); != nil {
if traceInference {
.tracef("core %s ≡ %s", , )
}
// If y is a defined type, it may not match against cx which
// is an underlying type (incl. int, string, etc.). Use assign
// mode here so that the unifier automatically takes under(y)
// if necessary.
return .(, , assign, )
}
}
// x != y and there's nothing to do
case nil:
// avoid a crash in case of nil type
default:
panic(sprintf(nil, nil, true, "u.nify(%s, %s, %d)", , , ))
}
return false
}
The pages are generated with Golds v0.7.0-preview. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds. |