// Copyright 2014 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package runtimeimport ()const itabInitSize = 512var ( itabLock mutex// lock for accessing itab table itabTable = &itabTableInit// pointer to current table itabTableInit = itabTableType{size: itabInitSize} // starter table)// Note: change the formula in the mallocgc call in itabAdd if you change these fields.type itabTableType struct { size uintptr// length of entries array. Always a power of 2. count uintptr// current number of filled entries. entries [itabInitSize]*itab// really [size] large}func itabHashFunc( *interfacetype, *_type) uintptr {// compiler has provided some good hash codes for us.returnuintptr(.Type.Hash ^ .Hash)}// getitab should be an internal detail,// but widely used packages access it using linkname.// Notable members of the hall of shame include:// - github.com/bytedance/sonic//// Do not remove or change the type signature.// See go.dev/issue/67401.////go:linkname getitabfunc getitab( *interfacetype, *_type, bool) *itab {iflen(.Methods) == 0 {throw("internal error - misuse of itab") }// easy caseif .TFlag&abi.TFlagUncommon == 0 {if {returnnil } := toRType(&.Type).nameOff(.Methods[0].Name)panic(&TypeAssertionError{nil, , &.Type, .Name()}) }var *itab// First, look in the existing table to see if we can find the itab we need. // This is by far the most common case, so do it without locks. // Use atomic to ensure we see any previous writes done by the thread // that updates the itabTable field (with atomic.Storep in itabAdd). := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable)))if = .find(, ); != nil {goto }// Not found. Grab the lock and try again.lock(&itabLock)if = itabTable.find(, ); != nil {unlock(&itabLock)goto }// Entry doesn't exist yet. Make a new entry & add it. = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(.Methods)-1)*goarch.PtrSize, 0, &memstats.other_sys)) .Inter = .Type = // The hash is used in type switches. However, compiler statically generates itab's // for all interface/type pairs used in switches (which are added to itabTable // in itabsinit). The dynamically-generated itab's never participate in type switches, // and thus the hash is irrelevant. // Note: m.Hash is _not_ the hash used for the runtime itabTable hash table. .Hash = 0itabInit(, true)itabAdd()unlock(&itabLock):if .Fun[0] != 0 {return }if {returnnil }// this can only happen if the conversion // was already done once using the , ok form // and we have a cached negative result. // The cached result doesn't record which // interface function was missing, so initialize // the itab again to get the missing function name.panic(&TypeAssertionError{concrete: , asserted: &.Type, missingMethod: itabInit(, false)})}// find finds the given interface/type pair in t.// Returns nil if the given interface/type pair isn't present.func ( *itabTableType) ( *interfacetype, *_type) *itab {// Implemented using quadratic probing. // Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k. // We're guaranteed to hit all table entries using this probe sequence. := .size - 1 := itabHashFunc(, ) & for := uintptr(1); ; ++ { := (**itab)(add(unsafe.Pointer(&.entries), *goarch.PtrSize))// Use atomic read here so if we see m != nil, we also see // the initializations of the fields of m. // m := *p := (*itab)(atomic.Loadp(unsafe.Pointer()))if == nil {returnnil }if .Inter == && .Type == {return } += &= }}// itabAdd adds the given itab to the itab hash table.// itabLock must be held.func itabAdd( *itab) {// Bugs can lead to calling this while mallocing is set, // typically because this is called while panicking. // Crash reliably, rather than only when we need to grow // the hash table.ifgetg().m.mallocing != 0 {throw("malloc deadlock") } := itabTableif .count >= 3*(.size/4) { // 75% load factor// Grow hash table. // t2 = new(itabTableType) + some additional entries // We lie and tell malloc we want pointer-free memory because // all the pointed-to values are not in the heap. := (*itabTableType)(mallocgc((2+2*.size)*goarch.PtrSize, nil, true)) .size = .size * 2// Copy over entries. // Note: while copying, other threads may look for an itab and // fail to find it. That's ok, they will then try to get the itab lock // and as a consequence wait until this copying is complete.iterate_itabs(.add)if .count != .count {throw("mismatched count during itab table copy") }// Publish new hash table. Use an atomic write: see comment in getitab.atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer())// Adopt the new table as our own. = itabTable// Note: the old table can be GC'ed here. } .add()}// add adds the given itab to itab table t.// itabLock must be held.func ( *itabTableType) ( *itab) {// See comment in find about the probe sequence. // Insert new itab in the first empty spot in the probe sequence. := .size - 1 := itabHashFunc(.Inter, .Type) & for := uintptr(1); ; ++ { := (**itab)(add(unsafe.Pointer(&.entries), *goarch.PtrSize)) := *if == {// A given itab may be used in more than one module // and thanks to the way global symbol resolution works, the // pointed-to itab may already have been inserted into the // global 'hash'.return }if == nil {// Use atomic write here so if a reader sees m, it also // sees the correctly initialized fields of m. // NoWB is ok because m is not in heap memory. // *p = matomic.StorepNoWB(unsafe.Pointer(), unsafe.Pointer()) .count++return } += &= }}// itabInit fills in the m.Fun array with all the code pointers for// the m.Inter/m.Type pair. If the type does not implement the interface,// it sets m.Fun[0] to 0 and returns the name of an interface function that is missing.// If !firstTime, itabInit will not write anything to m.Fun (see issue 65962).// It is ok to call this multiple times on the same m, even concurrently// (although it will only be called once with firstTime==true).func itabInit( *itab, bool) string { := .Inter := .Type := .Uncommon()// both inter and typ have method sorted by name, // and interface names are unique, // so can iterate over both in lock step; // the loop is O(ni+nt) not O(ni*nt). := len(.Methods) := int(.Mcount) := (*[1 << 16]abi.Method)(add(unsafe.Pointer(), uintptr(.Moff)))[::] := 0 := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&.Fun[0]))[::]varunsafe.Pointer:for := 0; < ; ++ { := &.Methods[] := toRType(&.Type).typeOff(.Typ) := toRType(&.Type).nameOff(.Name) := .Name() := pkgPath()if == "" { = .PkgPath.Name() }for ; < ; ++ { := &[] := toRType() := .nameOff(.Name)if .typeOff(.Mtyp) == && .Name() == { := pkgPath()if == "" { = .nameOff(.PkgPath).Name() }if .IsExported() || == { := .textOff(.Ifn)if == 0 { = // we'll set m.Fun[0] at the end } elseif { [] = }continue } } }// didn't find method // Leaves m.Fun[0] set to 0.return }if { .Fun[0] = uintptr() }return""}func itabsinit() {lockInit(&itabLock, lockRankItab)lock(&itabLock)for , := rangeactiveModules() {for , := range .itablinks {itabAdd() } }unlock(&itabLock)}// panicdottypeE is called when doing an e.(T) conversion and the conversion fails.// have = the dynamic type we have.// want = the static type we're trying to convert to.// iface = the static type we're converting from.func panicdottypeE(, , *_type) {panic(&TypeAssertionError{, , , ""})}// panicdottypeI is called when doing an i.(T) conversion and the conversion fails.// Same args as panicdottypeE, but "have" is the dynamic itab we have.func panicdottypeI( *itab, , *_type) {var *_typeif != nil { = .Type }panicdottypeE(, , )}// panicnildottype is called when doing an i.(T) conversion and the interface i is nil.// want = the static type we're trying to convert to.func panicnildottype( *_type) {panic(&TypeAssertionError{nil, nil, , ""})// TODO: Add the static type we're converting from as well. // It might generate a better error message. // Just to match other nil conversion errors, we don't for now.}// The specialized convTx routines need a type descriptor to use when calling mallocgc.// We don't need the type to be exact, just to have the correct size, alignment, and pointer-ness.// However, when debugging, it'd be nice to have some indication in mallocgc where the types came from,// so we use named types here.// We then construct interface values of these types,// and then extract the type word to use as needed.type ( uint16InterfacePtr uint16 uint32InterfacePtr uint32 uint64InterfacePtr uint64 stringInterfacePtr string sliceInterfacePtr []byte)var ( uint16Eface any = uint16InterfacePtr(0) uint32Eface any = uint32InterfacePtr(0) uint64Eface any = uint64InterfacePtr(0) stringEface any = stringInterfacePtr("") sliceEface any = sliceInterfacePtr(nil) uint16Type *_type = efaceOf(&uint16Eface)._type uint32Type *_type = efaceOf(&uint32Eface)._type uint64Type *_type = efaceOf(&uint64Eface)._type stringType *_type = efaceOf(&stringEface)._type sliceType *_type = efaceOf(&sliceEface)._type)// The conv and assert functions below do very similar things.// The convXXX functions are guaranteed by the compiler to succeed.// The assertXXX functions may fail (either panicking or returning false,// depending on whether they are 1-result or 2-result).// The convXXX functions succeed on a nil input, whereas the assertXXX// functions fail on a nil input.// convT converts a value of type t, which is pointed to by v, to a pointer that can// be used as the second word of an interface value.func convT( *_type, unsafe.Pointer) unsafe.Pointer {ifraceenabled {raceReadObjectPC(, , sys.GetCallerPC(), abi.FuncPCABIInternal()) }ifmsanenabled {msanread(, .Size_) }ifasanenabled {asanread(, .Size_) } := mallocgc(.Size_, , true)typedmemmove(, , )return}func convTnoptr( *_type, unsafe.Pointer) unsafe.Pointer {// TODO: maybe take size instead of type?ifraceenabled {raceReadObjectPC(, , sys.GetCallerPC(), abi.FuncPCABIInternal()) }ifmsanenabled {msanread(, .Size_) }ifasanenabled {asanread(, .Size_) } := mallocgc(.Size_, , false)memmove(, , .Size_)return}func convT16( uint16) ( unsafe.Pointer) {if < uint16(len(staticuint64s)) { = unsafe.Pointer(&staticuint64s[])ifgoarch.BigEndian { = add(, 6) } } else { = mallocgc(2, uint16Type, false) *(*uint16)() = }return}func convT32( uint32) ( unsafe.Pointer) {if < uint32(len(staticuint64s)) { = unsafe.Pointer(&staticuint64s[])ifgoarch.BigEndian { = add(, 4) } } else { = mallocgc(4, uint32Type, false) *(*uint32)() = }return}// convT64 should be an internal detail,// but widely used packages access it using linkname.// Notable members of the hall of shame include:// - github.com/bytedance/sonic//// Do not remove or change the type signature.// See go.dev/issue/67401.////go:linkname convT64func convT64( uint64) ( unsafe.Pointer) {if < uint64(len(staticuint64s)) { = unsafe.Pointer(&staticuint64s[]) } else { = mallocgc(8, uint64Type, false) *(*uint64)() = }return}// convTstring should be an internal detail,// but widely used packages access it using linkname.// Notable members of the hall of shame include:// - github.com/bytedance/sonic//// Do not remove or change the type signature.// See go.dev/issue/67401.////go:linkname convTstringfunc convTstring( string) ( unsafe.Pointer) {if == "" { = unsafe.Pointer(&zeroVal[0]) } else { = mallocgc(unsafe.Sizeof(), stringType, true) *(*string)() = }return}// convTslice should be an internal detail,// but widely used packages access it using linkname.// Notable members of the hall of shame include:// - github.com/bytedance/sonic//// Do not remove or change the type signature.// See go.dev/issue/67401.////go:linkname convTslicefunc convTslice( []byte) ( unsafe.Pointer) {// Note: this must work for any element type, not just byte.if (*slice)(unsafe.Pointer(&)).array == nil { = unsafe.Pointer(&zeroVal[0]) } else { = mallocgc(unsafe.Sizeof(), sliceType, true) *(*[]byte)() = }return}func assertE2I( *interfacetype, *_type) *itab {if == nil {// explicit conversions require non-nil interface value.panic(&TypeAssertionError{nil, nil, &.Type, ""}) }returngetitab(, , false)}func assertE2I2( *interfacetype, *_type) *itab {if == nil {returnnil }returngetitab(, , true)}// typeAssert builds an itab for the concrete type t and the// interface type s.Inter. If the conversion is not possible it// panics if s.CanFail is false and returns nil if s.CanFail is true.func typeAssert( *abi.TypeAssert, *_type) *itab {var *itabif == nil {if !.CanFail {panic(&TypeAssertionError{nil, nil, &.Inter.Type, ""}) } } else { = getitab(.Inter, , .CanFail) }if !abi.UseInterfaceSwitchCache(GOARCH) {return }// Maybe update the cache, so the next time the generated code // doesn't need to call into the runtime.ifcheaprand()&1023 != 0 {// Only bother updating the cache ~1 in 1000 times.return }// Load the current cache. := (*abi.TypeAssertCache)(atomic.Loadp(unsafe.Pointer(&.Cache)))ifcheaprand()&uint32(.Mask) != 0 {// As cache gets larger, choose to update it less often // so we can amortize the cost of building a new cache.return }// Make a new cache. := buildTypeAssertCache(, , )// Update cache. Use compare-and-swap so if multiple threads // are fighting to update the cache, at least one of their // updates will stick.atomic_casPointer((*unsafe.Pointer)(unsafe.Pointer(&.Cache)), unsafe.Pointer(), unsafe.Pointer())return}func buildTypeAssertCache( *abi.TypeAssertCache, *_type, *itab) *abi.TypeAssertCache { := unsafe.Slice(&.Entries[0], .Mask+1)// Count the number of entries we need. := 1for , := range {if .Typ != 0 { ++ } }// Figure out how big a table we need. // We need at least one more slot than the number of entries // so that we are guaranteed an empty slot (for termination). := * 2// make it at most 50% full = 1 << sys.Len64(uint64(-1)) // round up to a power of 2// Allocate the new table. := unsafe.Sizeof(abi.TypeAssertCache{}) + uintptr(-1)*unsafe.Sizeof(abi.TypeAssertCacheEntry{}) := (*abi.TypeAssertCache)(mallocgc(, nil, true)) .Mask = uintptr( - 1) := unsafe.Slice(&.Entries[0], )// Fill the new table. := func( *_type, *itab) { := int(.Hash) & ( - 1)for {if [].Typ == 0 { [].Typ = uintptr(unsafe.Pointer()) [].Itab = uintptr(unsafe.Pointer())return } = ( + 1) & ( - 1) } }for , := range {if .Typ != 0 { ((*_type)(unsafe.Pointer(.Typ)), (*itab)(unsafe.Pointer(.Itab))) } } (, )return}// Empty type assert cache. Contains one entry with a nil Typ (which// causes a cache lookup to fail immediately.)var emptyTypeAssertCache = abi.TypeAssertCache{Mask: 0}// interfaceSwitch compares t against the list of cases in s.// If t matches case i, interfaceSwitch returns the case index i and// an itab for the pair <t, s.Cases[i]>.// If there is no match, return N,nil, where N is the number// of cases.func interfaceSwitch( *abi.InterfaceSwitch, *_type) (int, *itab) { := unsafe.Slice(&.Cases[0], .NCases)// Results if we don't find a match. := len()var *itab// Look through each case in order.for , := range { = getitab(, , true)if != nil { = break } }if !abi.UseInterfaceSwitchCache(GOARCH) {return , }// Maybe update the cache, so the next time the generated code // doesn't need to call into the runtime.ifcheaprand()&1023 != 0 {// Only bother updating the cache ~1 in 1000 times. // This ensures we don't waste memory on switches, or // switch arguments, that only happen a few times.return , }// Load the current cache. := (*abi.InterfaceSwitchCache)(atomic.Loadp(unsafe.Pointer(&.Cache)))ifcheaprand()&uint32(.Mask) != 0 {// As cache gets larger, choose to update it less often // so we can amortize the cost of building a new cache // (that cost is linear in oldc.Mask).return , }// Make a new cache. := buildInterfaceSwitchCache(, , , )// Update cache. Use compare-and-swap so if multiple threads // are fighting to update the cache, at least one of their // updates will stick.atomic_casPointer((*unsafe.Pointer)(unsafe.Pointer(&.Cache)), unsafe.Pointer(), unsafe.Pointer())return , }// buildInterfaceSwitchCache constructs an interface switch cache// containing all the entries from oldC plus the new entry// (typ,case_,tab).func buildInterfaceSwitchCache( *abi.InterfaceSwitchCache, *_type, int, *itab) *abi.InterfaceSwitchCache { := unsafe.Slice(&.Entries[0], .Mask+1)// Count the number of entries we need. := 1for , := range {if .Typ != 0 { ++ } }// Figure out how big a table we need. // We need at least one more slot than the number of entries // so that we are guaranteed an empty slot (for termination). := * 2// make it at most 50% full = 1 << sys.Len64(uint64(-1)) // round up to a power of 2// Allocate the new table. := unsafe.Sizeof(abi.InterfaceSwitchCache{}) + uintptr(-1)*unsafe.Sizeof(abi.InterfaceSwitchCacheEntry{}) := (*abi.InterfaceSwitchCache)(mallocgc(, nil, true)) .Mask = uintptr( - 1) := unsafe.Slice(&.Entries[0], )// Fill the new table. := func( *_type, int, *itab) { := int(.Hash) & ( - 1)for {if [].Typ == 0 { [].Typ = uintptr(unsafe.Pointer()) [].Case = [].Itab = uintptr(unsafe.Pointer())return } = ( + 1) & ( - 1) } }for , := range {if .Typ != 0 { ((*_type)(unsafe.Pointer(.Typ)), .Case, (*itab)(unsafe.Pointer(.Itab))) } } (, , )return}// Empty interface switch cache. Contains one entry with a nil Typ (which// causes a cache lookup to fail immediately.)var emptyInterfaceSwitchCache = abi.InterfaceSwitchCache{Mask: 0}// reflect_ifaceE2I is for package reflect,// but widely used packages access it using linkname.// Notable members of the hall of shame include:// - gitee.com/quant1x/gox// - github.com/modern-go/reflect2// - github.com/v2pro/plz//// Do not remove or change the type signature.////go:linkname reflect_ifaceE2I reflect.ifaceE2Ifunc reflect_ifaceE2I( *interfacetype, eface, *iface) { * = iface{assertE2I(, ._type), .data}}//go:linkname reflectlite_ifaceE2I internal/reflectlite.ifaceE2Ifunc reflectlite_ifaceE2I( *interfacetype, eface, *iface) { * = iface{assertE2I(, ._type), .data}}func iterate_itabs( func(*itab)) {// Note: only runs during stop the world or with itabLock held, // so no other locks/atomics needed. := itabTablefor := uintptr(0); < .size; ++ { := *(**itab)(add(unsafe.Pointer(&.entries), *goarch.PtrSize))if != nil { () } }}// staticuint64s is used to avoid allocating in convTx for small integer values.// staticuint64s[0] == 0, staticuint64s[1] == 1, and so forth.// It is defined in assembler code so that it is read-only.var staticuint64s [256]uint64// getStaticuint64s is called by the reflect package to get a pointer// to the read-only array.////go:linkname getStaticuint64sfunc getStaticuint64s() *[256]uint64 {return &staticuint64s}// The linker redirects a reference of a method that it determined// unreachable to a reference to this function, so it will throw if// ever called.func unreachableMethod() {throw("unreachable method called. linker bug?")}
The pages are generated with Goldsv0.7.3. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @zigo_101 (reachable from the left QR code) to get the latest news of Golds.