// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package tls

import (
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
)

type clientHandshakeState struct {
	c            *Conn
	ctx          context.Context
	serverHello  *serverHelloMsg
	hello        *clientHelloMsg
	suite        *cipherSuite
	finishedHash finishedHash
	masterSecret []byte
	session      *SessionState // the session being resumed
	ticket       []byte        // a fresh ticket received during this handshake
}

var testingOnlyForceClientHelloSignatureAlgorithms []SignatureScheme

func ( *Conn) () (*clientHelloMsg, *keySharePrivateKeys, *echClientContext, error) {
	 := .config
	if len(.ServerName) == 0 && !.InsecureSkipVerify {
		return nil, nil, nil, errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config")
	}

	 := 0
	for ,  := range .NextProtos {
		if  := len();  == 0 ||  > 255 {
			return nil, nil, nil, errors.New("tls: invalid NextProtos value")
		} else {
			 += 1 + 
		}
	}
	if  > 0xffff {
		return nil, nil, nil, errors.New("tls: NextProtos values too large")
	}

	 := .supportedVersions(roleClient)
	if len() == 0 {
		return nil, nil, nil, errors.New("tls: no supported versions satisfy MinVersion and MaxVersion")
	}
	 := .maxSupportedVersion(roleClient)

	 := &clientHelloMsg{
		vers:                         ,
		compressionMethods:           []uint8{compressionNone},
		random:                       make([]byte, 32),
		extendedMasterSecret:         true,
		ocspStapling:                 true,
		scts:                         true,
		serverName:                   hostnameInSNI(.ServerName),
		supportedCurves:              .curvePreferences(),
		supportedPoints:              []uint8{pointFormatUncompressed},
		secureRenegotiationSupported: true,
		alpnProtocols:                .NextProtos,
		supportedVersions:            ,
	}

	// The version at the beginning of the ClientHello was capped at TLS 1.2
	// for compatibility reasons. The supported_versions extension is used
	// to negotiate versions now. See RFC 8446, Section 4.2.1.
	if .vers > VersionTLS12 {
		.vers = VersionTLS12
	}

	if .handshakes > 0 {
		.secureRenegotiation = .clientFinished[:]
	}

	 := cipherSuitesPreferenceOrder
	if !hasAESGCMHardwareSupport {
		 = cipherSuitesPreferenceOrderNoAES
	}
	 := .cipherSuites()
	.cipherSuites = make([]uint16, 0, len())

	for ,  := range  {
		 := mutualCipherSuite(, )
		if  == nil {
			continue
		}
		// Don't advertise TLS 1.2-only cipher suites unless
		// we're attempting TLS 1.2.
		if  < VersionTLS12 && .flags&suiteTLS12 != 0 {
			continue
		}
		.cipherSuites = append(.cipherSuites, )
	}

	,  := io.ReadFull(.rand(), .random)
	if  != nil {
		return nil, nil, nil, errors.New("tls: short read from Rand: " + .Error())
	}

	// A random session ID is used to detect when the server accepted a ticket
	// and is resuming a session (see RFC 5077). In TLS 1.3, it's always set as
	// a compatibility measure (see RFC 8446, Section 4.1.2).
	//
	// The session ID is not set for QUIC connections (see RFC 9001, Section 8.4).
	if .quic == nil {
		.sessionId = make([]byte, 32)
		if ,  := io.ReadFull(.rand(), .sessionId);  != nil {
			return nil, nil, nil, errors.New("tls: short read from Rand: " + .Error())
		}
	}

	if  >= VersionTLS12 {
		.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
	}
	if testingOnlyForceClientHelloSignatureAlgorithms != nil {
		.supportedSignatureAlgorithms = testingOnlyForceClientHelloSignatureAlgorithms
	}

	var  *keySharePrivateKeys
	if .supportedVersions[0] == VersionTLS13 {
		// Reset the list of ciphers when the client only supports TLS 1.3.
		if len(.supportedVersions) == 1 {
			.cipherSuites = nil
		}
		if fips140tls.Required() {
			.cipherSuites = append(.cipherSuites, defaultCipherSuitesTLS13FIPS...)
		} else if hasAESGCMHardwareSupport {
			.cipherSuites = append(.cipherSuites, defaultCipherSuitesTLS13...)
		} else {
			.cipherSuites = append(.cipherSuites, defaultCipherSuitesTLS13NoAES...)
		}

		if len(.supportedCurves) == 0 {
			return nil, nil, nil, errors.New("tls: no supported elliptic curves for ECDHE")
		}
		 := .supportedCurves[0]
		 = &keySharePrivateKeys{curveID: }
		// Note that if X25519MLKEM768 is supported, it will be first because
		// the preference order is fixed.
		if  == X25519MLKEM768 {
			.ecdhe,  = generateECDHEKey(.rand(), X25519)
			if  != nil {
				return nil, nil, nil, 
			}
			 := make([]byte, mlkem.SeedSize)
			if ,  := io.ReadFull(.rand(), );  != nil {
				return nil, nil, nil, 
			}
			.mlkem,  = mlkem.NewDecapsulationKey768()
			if  != nil {
				return nil, nil, nil, 
			}
			 := .mlkem.EncapsulationKey().Bytes()
			 := .ecdhe.PublicKey().Bytes()
			.keyShares = []keyShare{
				{group: X25519MLKEM768, data: append(, ...)},
			}
			// If both X25519MLKEM768 and X25519 are supported, we send both key
			// shares (as a fallback) and we reuse the same X25519 ephemeral
			// key, as allowed by draft-ietf-tls-hybrid-design-09, Section 3.2.
			if slices.Contains(.supportedCurves, X25519) {
				.keyShares = append(.keyShares, keyShare{group: X25519, data: })
			}
		} else {
			if ,  := curveForCurveID(); ! {
				return nil, nil, nil, errors.New("tls: CurvePreferences includes unsupported curve")
			}
			.ecdhe,  = generateECDHEKey(.rand(), )
			if  != nil {
				return nil, nil, nil, 
			}
			.keyShares = []keyShare{{group: , data: .ecdhe.PublicKey().Bytes()}}
		}
	}

	if .quic != nil {
		,  := .quicGetTransportParameters()
		if  != nil {
			return nil, nil, nil, 
		}
		if  == nil {
			 = []byte{}
		}
		.quicTransportParameters = 
	}

	var  *echClientContext
	if .config.EncryptedClientHelloConfigList != nil {
		if .config.MinVersion != 0 && .config.MinVersion < VersionTLS13 {
			return nil, nil, nil, errors.New("tls: MinVersion must be >= VersionTLS13 if EncryptedClientHelloConfigList is populated")
		}
		if .config.MaxVersion != 0 && .config.MaxVersion <= VersionTLS12 {
			return nil, nil, nil, errors.New("tls: MaxVersion must be >= VersionTLS13 if EncryptedClientHelloConfigList is populated")
		}
		,  := parseECHConfigList(.config.EncryptedClientHelloConfigList)
		if  != nil {
			return nil, nil, nil, 
		}
		 := pickECHConfig()
		if  == nil {
			return nil, nil, nil, errors.New("tls: EncryptedClientHelloConfigList contains no valid configs")
		}
		 = &echClientContext{config: }
		.encryptedClientHello = []byte{1} // indicate inner hello
		// We need to explicitly set these 1.2 fields to nil, as we do not
		// marshal them when encoding the inner hello, otherwise transcripts
		// will later mismatch.
		.supportedPoints = nil
		.ticketSupported = false
		.secureRenegotiationSupported = false
		.extendedMasterSecret = false

		,  := hpke.ParseHPKEPublicKey(.config.KemID, .config.PublicKey)
		if  != nil {
			return nil, nil, nil, 
		}
		,  := pickECHCipherSuite(.config.SymmetricCipherSuite)
		if  != nil {
			return nil, nil, nil, 
		}
		.kdfID, .aeadID = .KDFID, .AEADID
		 := append([]byte("tls ech\x00"), .config.raw...)
		.encapsulatedKey, .hpkeContext,  = hpke.SetupSender(.config.KemID, .KDFID, .AEADID, , )
		if  != nil {
			return nil, nil, nil, 
		}
	}

	return , , , nil
}

type echClientContext struct {
	config          *echConfig
	hpkeContext     *hpke.Sender
	encapsulatedKey []byte
	innerHello      *clientHelloMsg
	innerTranscript hash.Hash
	kdfID           uint16
	aeadID          uint16
	echRejected     bool
}

func ( *Conn) ( context.Context) ( error) {
	if .config == nil {
		.config = defaultConfig()
	}

	// This may be a renegotiation handshake, in which case some fields
	// need to be reset.
	.didResume = false

	, , ,  := .makeClientHello()
	if  != nil {
		return 
	}

	, , ,  := .loadSession()
	if  != nil {
		return 
	}
	if  != nil {
		defer func() {
			// If we got a handshake failure when resuming a session, throw away
			// the session ticket. See RFC 5077, Section 3.2.
			//
			// RFC 8446 makes no mention of dropping tickets on failure, but it
			// does require servers to abort on invalid binders, so we need to
			// delete tickets to recover from a corrupted PSK.
			if  != nil {
				if  := .clientSessionCacheKey();  != "" {
					.config.ClientSessionCache.Put(, nil)
				}
			}
		}()
	}

	if  != nil {
		// Split hello into inner and outer
		.innerHello = .clone()

		// Overwrite the server name in the outer hello with the public facing
		// name.
		.serverName = string(.config.PublicName)
		// Generate a new random for the outer hello.
		.random = make([]byte, 32)
		_,  = io.ReadFull(.config.rand(), .random)
		if  != nil {
			return errors.New("tls: short read from Rand: " + .Error())
		}

		// NOTE: we don't do PSK GREASE, in line with boringssl, it's meant to
		// work around _possibly_ broken middleboxes, but there is little-to-no
		// evidence that this is actually a problem.

		if  := computeAndUpdateOuterECHExtension(, .innerHello, , true);  != nil {
			return 
		}
	}

	.serverName = .serverName

	if ,  := .writeHandshakeRecord(, nil);  != nil {
		return 
	}

	if .earlyData {
		 := cipherSuiteTLS13ByID(.cipherSuite)
		 := .hash.New()
		if  := transcriptMsg(, );  != nil {
			return 
		}
		 := .ClientEarlyTrafficSecret()
		.quicSetWriteSecret(QUICEncryptionLevelEarly, .id, )
	}

	// serverHelloMsg is not included in the transcript
	,  := .readHandshake(nil)
	if  != nil {
		return 
	}

	,  := .(*serverHelloMsg)
	if ! {
		.sendAlert(alertUnexpectedMessage)
		return unexpectedMessageError(, )
	}

	if  := .pickTLSVersion();  != nil {
		return 
	}

	// If we are negotiating a protocol version that's lower than what we
	// support, check for the server downgrade canaries.
	// See RFC 8446, Section 4.1.3.
	 := .config.maxSupportedVersion(roleClient)
	 := string(.random[24:]) == downgradeCanaryTLS12
	 := string(.random[24:]) == downgradeCanaryTLS11
	if  == VersionTLS13 && .vers <= VersionTLS12 && ( || ) ||
		 == VersionTLS12 && .vers <= VersionTLS11 &&  {
		.sendAlert(alertIllegalParameter)
		return errors.New("tls: downgrade attempt detected, possibly due to a MitM attack or a broken middlebox")
	}

	if .vers == VersionTLS13 {
		 := &clientHandshakeStateTLS13{
			c:            ,
			ctx:          ,
			serverHello:  ,
			hello:        ,
			keyShareKeys: ,
			session:      ,
			earlySecret:  ,
			binderKey:    ,
			echContext:   ,
		}
		return .handshake()
	}

	 := &clientHandshakeState{
		c:           ,
		ctx:         ,
		serverHello: ,
		hello:       ,
		session:     ,
	}
	return .handshake()
}

func ( *Conn) ( *clientHelloMsg) (
	 *SessionState,  *tls13.EarlySecret,  []byte,  error) {
	if .config.SessionTicketsDisabled || .config.ClientSessionCache == nil {
		return nil, nil, nil, nil
	}

	 := bytes.Equal(.encryptedClientHello, []byte{1})

	// ticketSupported is a TLS 1.2 extension (as TLS 1.3 replaced tickets with PSK
	// identities) and ECH requires and forces TLS 1.3.
	.ticketSupported = true && !

	if .supportedVersions[0] == VersionTLS13 {
		// Require DHE on resumption as it guarantees forward secrecy against
		// compromise of the session ticket key. See RFC 8446, Section 4.2.9.
		.pskModes = []uint8{pskModeDHE}
	}

	// Session resumption is not allowed if renegotiating because
	// renegotiation is primarily used to allow a client to send a client
	// certificate, which would be skipped if session resumption occurred.
	if .handshakes != 0 {
		return nil, nil, nil, nil
	}

	// Try to resume a previously negotiated TLS session, if available.
	 := .clientSessionCacheKey()
	if  == "" {
		return nil, nil, nil, nil
	}
	,  := .config.ClientSessionCache.Get()
	if ! ||  == nil {
		return nil, nil, nil, nil
	}
	 = .session

	// Check that version used for the previous session is still valid.
	 := false
	for ,  := range .supportedVersions {
		if  == .version {
			 = true
			break
		}
	}
	if ! {
		return nil, nil, nil, nil
	}

	// Check that the cached server certificate is not expired, and that it's
	// valid for the ServerName. This should be ensured by the cache key, but
	// protect the application from a faulty ClientSessionCache implementation.
	if .config.time().After(.peerCertificates[0].NotAfter) {
		// Expired certificate, delete the entry.
		.config.ClientSessionCache.Put(, nil)
		return nil, nil, nil, nil
	}
	if !.config.InsecureSkipVerify {
		if len(.verifiedChains) == 0 {
			// The original connection had InsecureSkipVerify, while this doesn't.
			return nil, nil, nil, nil
		}
		if  := .peerCertificates[0].VerifyHostname(.config.ServerName);  != nil {
			return nil, nil, nil, nil
		}
	}

	if .version != VersionTLS13 {
		// In TLS 1.2 the cipher suite must match the resumed session. Ensure we
		// are still offering it.
		if mutualCipherSuite(.cipherSuites, .cipherSuite) == nil {
			return nil, nil, nil, nil
		}

		.sessionTicket = .ticket
		return
	}

	// Check that the session ticket is not expired.
	if .config.time().After(time.Unix(int64(.useBy), 0)) {
		.config.ClientSessionCache.Put(, nil)
		return nil, nil, nil, nil
	}

	// In TLS 1.3 the KDF hash must match the resumed session. Ensure we
	// offer at least one cipher suite with that hash.
	 := cipherSuiteTLS13ByID(.cipherSuite)
	if  == nil {
		return nil, nil, nil, nil
	}
	 := false
	for ,  := range .cipherSuites {
		 := cipherSuiteTLS13ByID()
		if  != nil && .hash == .hash {
			 = true
			break
		}
	}
	if ! {
		return nil, nil, nil, nil
	}

	if .quic != nil {
		if .quic.enableSessionEvents {
			.quicResumeSession()
		}

		// For 0-RTT, the cipher suite has to match exactly, and we need to be
		// offering the same ALPN.
		if .EarlyData && mutualCipherSuiteTLS13(.cipherSuites, .cipherSuite) != nil {
			for ,  := range .alpnProtocols {
				if  == .alpnProtocol {
					.earlyData = true
					break
				}
			}
		}
	}

	// Set the pre_shared_key extension. See RFC 8446, Section 4.2.11.1.
	 := .config.time().Sub(time.Unix(int64(.createdAt), 0))
	 := pskIdentity{
		label:               .ticket,
		obfuscatedTicketAge: uint32(/time.Millisecond) + .ageAdd,
	}
	.pskIdentities = []pskIdentity{}
	.pskBinders = [][]byte{make([]byte, .hash.Size())}

	// Compute the PSK binders. See RFC 8446, Section 4.2.11.2.
	 = tls13.NewEarlySecret(.hash.New, .secret)
	 = .ResumptionBinderKey()
	 := .hash.New()
	if  := computeAndUpdatePSK(, , , .finishedHash);  != nil {
		return nil, nil, nil, 
	}

	return
}

func ( *Conn) ( *serverHelloMsg) error {
	 := .vers
	if .supportedVersion != 0 {
		 = .supportedVersion
	}

	,  := .config.mutualVersion(roleClient, []uint16{})
	if ! {
		.sendAlert(alertProtocolVersion)
		return fmt.Errorf("tls: server selected unsupported protocol version %x", )
	}

	.vers = 
	.haveVers = true
	.in.version = 
	.out.version = 

	return nil
}

// Does the handshake, either a full one or resumes old session. Requires hs.c,
// hs.hello, hs.serverHello, and, optionally, hs.session to be set.
func ( *clientHandshakeState) () error {
	 := .c

	,  := .processServerHello()
	if  != nil {
		return 
	}

	.finishedHash = newFinishedHash(.vers, .suite)

	// No signatures of the handshake are needed in a resumption.
	// Otherwise, in a full handshake, if we don't have any certificates
	// configured then we will never send a CertificateVerify message and
	// thus no signatures are needed in that case either.
	if  || (len(.config.Certificates) == 0 && .config.GetClientCertificate == nil) {
		.finishedHash.discardHandshakeBuffer()
	}

	if  := transcriptMsg(.hello, &.finishedHash);  != nil {
		return 
	}
	if  := transcriptMsg(.serverHello, &.finishedHash);  != nil {
		return 
	}

	.buffering = true
	.didResume = 
	if  {
		if  := .establishKeys();  != nil {
			return 
		}
		if  := .readSessionTicket();  != nil {
			return 
		}
		if  := .readFinished(.serverFinished[:]);  != nil {
			return 
		}
		.clientFinishedIsFirst = false
		// Make sure the connection is still being verified whether or not this
		// is a resumption. Resumptions currently don't reverify certificates so
		// they don't call verifyServerCertificate. See Issue 31641.
		if .config.VerifyConnection != nil {
			if  := .config.VerifyConnection(.connectionStateLocked());  != nil {
				.sendAlert(alertBadCertificate)
				return 
			}
		}
		if  := .sendFinished(.clientFinished[:]);  != nil {
			return 
		}
		if ,  := .flush();  != nil {
			return 
		}
	} else {
		if  := .doFullHandshake();  != nil {
			return 
		}
		if  := .establishKeys();  != nil {
			return 
		}
		if  := .sendFinished(.clientFinished[:]);  != nil {
			return 
		}
		if ,  := .flush();  != nil {
			return 
		}
		.clientFinishedIsFirst = true
		if  := .readSessionTicket();  != nil {
			return 
		}
		if  := .readFinished(.serverFinished[:]);  != nil {
			return 
		}
	}
	if  := .saveSessionTicket();  != nil {
		return 
	}

	.ekm = ekmFromMasterSecret(.vers, .suite, .masterSecret, .hello.random, .serverHello.random)
	.isHandshakeComplete.Store(true)

	return nil
}

func ( *clientHandshakeState) () error {
	if .suite = mutualCipherSuite(.hello.cipherSuites, .serverHello.cipherSuite); .suite == nil {
		.c.sendAlert(alertHandshakeFailure)
		return errors.New("tls: server chose an unconfigured cipher suite")
	}

	if .c.config.CipherSuites == nil && !fips140tls.Required() && rsaKexCiphers[.suite.id] {
		tlsrsakex.Value() // ensure godebug is initialized
		tlsrsakex.IncNonDefault()
	}
	if .c.config.CipherSuites == nil && !fips140tls.Required() && tdesCiphers[.suite.id] {
		tls3des.Value() // ensure godebug is initialized
		tls3des.IncNonDefault()
	}

	.c.cipherSuite = .suite.id
	return nil
}

func ( *clientHandshakeState) () error {
	 := .c

	,  := .readHandshake(&.finishedHash)
	if  != nil {
		return 
	}
	,  := .(*certificateMsg)
	if ! || len(.certificates) == 0 {
		.sendAlert(alertUnexpectedMessage)
		return unexpectedMessageError(, )
	}

	,  = .readHandshake(&.finishedHash)
	if  != nil {
		return 
	}

	,  := .(*certificateStatusMsg)
	if  {
		// RFC4366 on Certificate Status Request:
		// The server MAY return a "certificate_status" message.

		if !.serverHello.ocspStapling {
			// If a server returns a "CertificateStatus" message, then the
			// server MUST have included an extension of type "status_request"
			// with empty "extension_data" in the extended server hello.

			.sendAlert(alertUnexpectedMessage)
			return errors.New("tls: received unexpected CertificateStatus message")
		}

		.ocspResponse = .response

		,  = .readHandshake(&.finishedHash)
		if  != nil {
			return 
		}
	}

	if .handshakes == 0 {
		// If this is the first handshake on a connection, process and
		// (optionally) verify the server's certificates.
		if  := .verifyServerCertificate(.certificates);  != nil {
			return 
		}
	} else {
		// This is a renegotiation handshake. We require that the
		// server's identity (i.e. leaf certificate) is unchanged and
		// thus any previous trust decision is still valid.
		//
		// See https://mitls.org/pages/attacks/3SHAKE for the
		// motivation behind this requirement.
		if !bytes.Equal(.peerCertificates[0].Raw, .certificates[0]) {
			.sendAlert(alertBadCertificate)
			return errors.New("tls: server's identity changed during renegotiation")
		}
	}

	 := .suite.ka(.vers)

	,  := .(*serverKeyExchangeMsg)
	if  {
		 = .processServerKeyExchange(.config, .hello, .serverHello, .peerCertificates[0], )
		if  != nil {
			.sendAlert(alertIllegalParameter)
			return 
		}
		if len(.key) >= 3 && .key[0] == 3 /* named curve */ {
			.curveID = CurveID(byteorder.BEUint16(.key[1:]))
		}

		,  = .readHandshake(&.finishedHash)
		if  != nil {
			return 
		}
	}

	var  *Certificate
	var  bool
	,  := .(*certificateRequestMsg)
	if  {
		 = true

		 := certificateRequestInfoFromMsg(.ctx, .vers, )
		if ,  = .getClientCertificate();  != nil {
			.sendAlert(alertInternalError)
			return 
		}

		,  = .readHandshake(&.finishedHash)
		if  != nil {
			return 
		}
	}

	,  := .(*serverHelloDoneMsg)
	if ! {
		.sendAlert(alertUnexpectedMessage)
		return unexpectedMessageError(, )
	}

	// If the server requested a certificate then we have to send a
	// Certificate message, even if it's empty because we don't have a
	// certificate to send.
	if  {
		 = new(certificateMsg)
		.certificates = .Certificate
		if ,  := .c.writeHandshakeRecord(, &.finishedHash);  != nil {
			return 
		}
	}

	, ,  := .generateClientKeyExchange(.config, .hello, .peerCertificates[0])
	if  != nil {
		.sendAlert(alertInternalError)
		return 
	}
	if  != nil {
		if ,  := .c.writeHandshakeRecord(, &.finishedHash);  != nil {
			return 
		}
	}

	if .serverHello.extendedMasterSecret {
		.extMasterSecret = true
		.masterSecret = extMasterFromPreMasterSecret(.vers, .suite, ,
			.finishedHash.Sum())
	} else {
		.masterSecret = masterFromPreMasterSecret(.vers, .suite, ,
			.hello.random, .serverHello.random)
	}
	if  := .config.writeKeyLog(keyLogLabelTLS12, .hello.random, .masterSecret);  != nil {
		.sendAlert(alertInternalError)
		return errors.New("tls: failed to write to key log: " + .Error())
	}

	if  != nil && len(.Certificate) > 0 {
		 := &certificateVerifyMsg{}

		,  := .PrivateKey.(crypto.Signer)
		if ! {
			.sendAlert(alertInternalError)
			return fmt.Errorf("tls: client certificate private key of type %T does not implement crypto.Signer", .PrivateKey)
		}

		var  uint8
		var  crypto.Hash
		if .vers >= VersionTLS12 {
			,  := selectSignatureScheme(.vers, , .supportedSignatureAlgorithms)
			if  != nil {
				.sendAlert(alertIllegalParameter)
				return 
			}
			, ,  = typeAndHashFromSignatureScheme()
			if  != nil {
				return .sendAlert(alertInternalError)
			}
			.hasSignatureAlgorithm = true
			.signatureAlgorithm = 
		} else {
			, ,  = legacyTypeAndHashFromPublicKey(.Public())
			if  != nil {
				.sendAlert(alertIllegalParameter)
				return 
			}
		}

		 := .finishedHash.hashForClientCertificate(, )
		 := crypto.SignerOpts()
		if  == signatureRSAPSS {
			 = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: }
		}
		.signature,  = .Sign(.config.rand(), , )
		if  != nil {
			.sendAlert(alertInternalError)
			return 
		}

		if ,  := .c.writeHandshakeRecord(, &.finishedHash);  != nil {
			return 
		}
	}

	.finishedHash.discardHandshakeBuffer()

	return nil
}

func ( *clientHandshakeState) () error {
	 := .c

	, , , , ,  :=
		keysFromMasterSecret(.vers, .suite, .masterSecret, .hello.random, .serverHello.random, .suite.macLen, .suite.keyLen, .suite.ivLen)
	var ,  any
	var ,  hash.Hash
	if .suite.cipher != nil {
		 = .suite.cipher(, , false /* not for reading */)
		 = .suite.mac()
		 = .suite.cipher(, , true /* for reading */)
		 = .suite.mac()
	} else {
		 = .suite.aead(, )
		 = .suite.aead(, )
	}

	.in.prepareCipherSpec(.vers, , )
	.out.prepareCipherSpec(.vers, , )
	return nil
}

func ( *clientHandshakeState) () bool {
	// If the server responded with the same sessionId then it means the
	// sessionTicket is being used to resume a TLS session.
	return .session != nil && .hello.sessionId != nil &&
		bytes.Equal(.serverHello.sessionId, .hello.sessionId)
}

func ( *clientHandshakeState) () (bool, error) {
	 := .c

	if  := .pickCipherSuite();  != nil {
		return false, 
	}

	if .serverHello.compressionMethod != compressionNone {
		.sendAlert(alertUnexpectedMessage)
		return false, errors.New("tls: server selected unsupported compression format")
	}

	if .handshakes == 0 && .serverHello.secureRenegotiationSupported {
		.secureRenegotiation = true
		if len(.serverHello.secureRenegotiation) != 0 {
			.sendAlert(alertHandshakeFailure)
			return false, errors.New("tls: initial handshake had non-empty renegotiation extension")
		}
	}

	if .handshakes > 0 && .secureRenegotiation {
		var  [24]byte
		copy([:], .clientFinished[:])
		copy([12:], .serverFinished[:])
		if !bytes.Equal(.serverHello.secureRenegotiation, [:]) {
			.sendAlert(alertHandshakeFailure)
			return false, errors.New("tls: incorrect renegotiation extension contents")
		}
	}

	if  := checkALPN(.hello.alpnProtocols, .serverHello.alpnProtocol, false);  != nil {
		.sendAlert(alertUnsupportedExtension)
		return false, 
	}
	.clientProtocol = .serverHello.alpnProtocol

	.scts = .serverHello.scts

	if !.serverResumedSession() {
		return false, nil
	}

	if .session.version != .vers {
		.sendAlert(alertHandshakeFailure)
		return false, errors.New("tls: server resumed a session with a different version")
	}

	if .session.cipherSuite != .suite.id {
		.sendAlert(alertHandshakeFailure)
		return false, errors.New("tls: server resumed a session with a different cipher suite")
	}

	// RFC 7627, Section 5.3
	if .session.extMasterSecret != .serverHello.extendedMasterSecret {
		.sendAlert(alertHandshakeFailure)
		return false, errors.New("tls: server resumed a session with a different EMS extension")
	}

	// Restore master secret and certificates from previous state
	.masterSecret = .session.secret
	.extMasterSecret = .session.extMasterSecret
	.peerCertificates = .session.peerCertificates
	.activeCertHandles = .c.activeCertHandles
	.verifiedChains = .session.verifiedChains
	.ocspResponse = .session.ocspResponse
	// Let the ServerHello SCTs override the session SCTs from the original
	// connection, if any are provided
	if len(.scts) == 0 && len(.session.scts) != 0 {
		.scts = .session.scts
	}

	return true, nil
}

// checkALPN ensure that the server's choice of ALPN protocol is compatible with
// the protocols that we advertised in the Client Hello.
func checkALPN( []string,  string,  bool) error {
	if  == "" {
		if  && len() > 0 {
			// RFC 9001, Section 8.1
			return errors.New("tls: server did not select an ALPN protocol")
		}
		return nil
	}
	if len() == 0 {
		return errors.New("tls: server advertised unrequested ALPN extension")
	}
	for ,  := range  {
		if  ==  {
			return nil
		}
	}
	return errors.New("tls: server selected unadvertised ALPN protocol")
}

func ( *clientHandshakeState) ( []byte) error {
	 := .c

	if  := .readChangeCipherSpec();  != nil {
		return 
	}

	// finishedMsg is included in the transcript, but not until after we
	// check the client version, since the state before this message was
	// sent is used during verification.
	,  := .readHandshake(nil)
	if  != nil {
		return 
	}
	,  := .(*finishedMsg)
	if ! {
		.sendAlert(alertUnexpectedMessage)
		return unexpectedMessageError(, )
	}

	 := .finishedHash.serverSum(.masterSecret)
	if len() != len(.verifyData) ||
		subtle.ConstantTimeCompare(, .verifyData) != 1 {
		.sendAlert(alertHandshakeFailure)
		return errors.New("tls: server's Finished message was incorrect")
	}

	if  := transcriptMsg(, &.finishedHash);  != nil {
		return 
	}

	copy(, )
	return nil
}

func ( *clientHandshakeState) () error {
	if !.serverHello.ticketSupported {
		return nil
	}
	 := .c

	if !.hello.ticketSupported {
		.sendAlert(alertIllegalParameter)
		return errors.New("tls: server sent unrequested session ticket")
	}

	,  := .readHandshake(&.finishedHash)
	if  != nil {
		return 
	}
	,  := .(*newSessionTicketMsg)
	if ! {
		.sendAlert(alertUnexpectedMessage)
		return unexpectedMessageError(, )
	}

	.ticket = .ticket
	return nil
}

func ( *clientHandshakeState) () error {
	if .ticket == nil {
		return nil
	}
	 := .c

	 := .clientSessionCacheKey()
	if  == "" {
		return nil
	}

	 := .sessionState()
	.secret = .masterSecret
	.ticket = .ticket

	 := &ClientSessionState{session: }
	.config.ClientSessionCache.Put(, )
	return nil
}

func ( *clientHandshakeState) ( []byte) error {
	 := .c

	if  := .writeChangeCipherRecord();  != nil {
		return 
	}

	 := new(finishedMsg)
	.verifyData = .finishedHash.clientSum(.masterSecret)
	if ,  := .c.writeHandshakeRecord(, &.finishedHash);  != nil {
		return 
	}
	copy(, .verifyData)
	return nil
}

// defaultMaxRSAKeySize is the maximum RSA key size in bits that we are willing
// to verify the signatures of during a TLS handshake.
const defaultMaxRSAKeySize = 8192

var tlsmaxrsasize = godebug.New("tlsmaxrsasize")

func checkKeySize( int) ( int,  bool) {
	if  := tlsmaxrsasize.Value();  != "" {
		if ,  := strconv.Atoi();  == nil {
			if ( <= ) != ( <= defaultMaxRSAKeySize) {
				tlsmaxrsasize.IncNonDefault()
			}
			return ,  <= 
		}
	}
	return defaultMaxRSAKeySize,  <= defaultMaxRSAKeySize
}

// verifyServerCertificate parses and verifies the provided chain, setting
// c.verifiedChains and c.peerCertificates or sending the appropriate alert.
func ( *Conn) ( [][]byte) error {
	 := make([]*activeCert, len())
	 := make([]*x509.Certificate, len())
	for ,  := range  {
		,  := globalCertCache.newCert()
		if  != nil {
			.sendAlert(alertBadCertificate)
			return errors.New("tls: failed to parse certificate from server: " + .Error())
		}
		if .cert.PublicKeyAlgorithm == x509.RSA {
			 := .cert.PublicKey.(*rsa.PublicKey).N.BitLen()
			if ,  := checkKeySize(); ! {
				.sendAlert(alertBadCertificate)
				return fmt.Errorf("tls: server sent certificate containing RSA key larger than %d bits", )
			}
		}
		[] = 
		[] = .cert
	}

	 := .config.EncryptedClientHelloConfigList != nil && !.echAccepted
	if  {
		if .config.EncryptedClientHelloRejectionVerify != nil {
			if  := .config.EncryptedClientHelloRejectionVerify(.connectionStateLocked());  != nil {
				.sendAlert(alertBadCertificate)
				return 
			}
		} else {
			 := x509.VerifyOptions{
				Roots:         .config.RootCAs,
				CurrentTime:   .config.time(),
				DNSName:       .serverName,
				Intermediates: x509.NewCertPool(),
			}

			for ,  := range [1:] {
				.Intermediates.AddCert()
			}
			,  := [0].Verify()
			if  != nil {
				.sendAlert(alertBadCertificate)
				return &CertificateVerificationError{UnverifiedCertificates: , Err: }
			}

			.verifiedChains,  = fipsAllowedChains()
			if  != nil {
				.sendAlert(alertBadCertificate)
				return &CertificateVerificationError{UnverifiedCertificates: , Err: }
			}
		}
	} else if !.config.InsecureSkipVerify {
		 := x509.VerifyOptions{
			Roots:         .config.RootCAs,
			CurrentTime:   .config.time(),
			DNSName:       .config.ServerName,
			Intermediates: x509.NewCertPool(),
		}

		for ,  := range [1:] {
			.Intermediates.AddCert()
		}
		,  := [0].Verify()
		if  != nil {
			.sendAlert(alertBadCertificate)
			return &CertificateVerificationError{UnverifiedCertificates: , Err: }
		}

		.verifiedChains,  = fipsAllowedChains()
		if  != nil {
			.sendAlert(alertBadCertificate)
			return &CertificateVerificationError{UnverifiedCertificates: , Err: }
		}
	}

	switch [0].PublicKey.(type) {
	case *rsa.PublicKey, *ecdsa.PublicKey, ed25519.PublicKey:
		break
	default:
		.sendAlert(alertUnsupportedCertificate)
		return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", [0].PublicKey)
	}

	.activeCertHandles = 
	.peerCertificates = 

	if .config.VerifyPeerCertificate != nil && ! {
		if  := .config.VerifyPeerCertificate(, .verifiedChains);  != nil {
			.sendAlert(alertBadCertificate)
			return 
		}
	}

	if .config.VerifyConnection != nil && ! {
		if  := .config.VerifyConnection(.connectionStateLocked());  != nil {
			.sendAlert(alertBadCertificate)
			return 
		}
	}

	return nil
}

// certificateRequestInfoFromMsg generates a CertificateRequestInfo from a TLS
// <= 1.2 CertificateRequest, making an effort to fill in missing information.
func certificateRequestInfoFromMsg( context.Context,  uint16,  *certificateRequestMsg) *CertificateRequestInfo {
	 := &CertificateRequestInfo{
		AcceptableCAs: .certificateAuthorities,
		Version:       ,
		ctx:           ,
	}

	var ,  bool
	for ,  := range .certificateTypes {
		switch  {
		case certTypeRSASign:
			 = true
		case certTypeECDSASign:
			 = true
		}
	}

	if !.hasSignatureAlgorithm {
		// Prior to TLS 1.2, signature schemes did not exist. In this case we
		// make up a list based on the acceptable certificate types, to help
		// GetClientCertificate and SupportsCertificate select the right certificate.
		// The hash part of the SignatureScheme is a lie here, because
		// TLS 1.0 and 1.1 always use MD5+SHA1 for RSA and SHA1 for ECDSA.
		switch {
		case  && :
			.SignatureSchemes = []SignatureScheme{
				ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512,
				PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1,
			}
		case :
			.SignatureSchemes = []SignatureScheme{
				PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1,
			}
		case :
			.SignatureSchemes = []SignatureScheme{
				ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512,
			}
		}
		return 
	}

	// Filter the signature schemes based on the certificate types.
	// See RFC 5246, Section 7.4.4 (where it calls this "somewhat complicated").
	.SignatureSchemes = make([]SignatureScheme, 0, len(.supportedSignatureAlgorithms))
	for ,  := range .supportedSignatureAlgorithms {
		, ,  := typeAndHashFromSignatureScheme()
		if  != nil {
			continue
		}
		switch  {
		case signatureECDSA, signatureEd25519:
			if  {
				.SignatureSchemes = append(.SignatureSchemes, )
			}
		case signatureRSAPSS, signaturePKCS1v15:
			if  {
				.SignatureSchemes = append(.SignatureSchemes, )
			}
		}
	}

	return 
}

func ( *Conn) ( *CertificateRequestInfo) (*Certificate, error) {
	if .config.GetClientCertificate != nil {
		return .config.GetClientCertificate()
	}

	for ,  := range .config.Certificates {
		if  := .SupportsCertificate(&);  != nil {
			continue
		}
		return &, nil
	}

	// No acceptable certificate found. Don't send a certificate.
	return new(Certificate), nil
}

// clientSessionCacheKey returns a key used to cache sessionTickets that could
// be used to resume previously negotiated TLS sessions with a server.
func ( *Conn) () string {
	if len(.config.ServerName) > 0 {
		return .config.ServerName
	}
	if .conn != nil {
		return .conn.RemoteAddr().String()
	}
	return ""
}

// hostnameInSNI converts name into an appropriate hostname for SNI.
// Literal IP addresses and absolute FQDNs are not permitted as SNI values.
// See RFC 6066, Section 3.
func hostnameInSNI( string) string {
	 := 
	if len() > 0 && [0] == '[' && [len()-1] == ']' {
		 = [1 : len()-1]
	}
	if  := strings.LastIndex(, "%");  > 0 {
		 = [:]
	}
	if net.ParseIP() != nil {
		return ""
	}
	for len() > 0 && [len()-1] == '.' {
		 = [:len()-1]
	}
	return 
}

func computeAndUpdatePSK( *clientHelloMsg,  []byte,  hash.Hash,  func([]byte, hash.Hash) []byte) error {
	,  := .marshalWithoutBinders()
	if  != nil {
		return 
	}
	.Write()
	 := [][]byte{(, )}
	return .updateBinders()
}